Jump to content
  • Welcome to the eG Forums, a service of the eGullet Society for Culinary Arts & Letters. The Society is a 501(c)3 not-for-profit organization dedicated to the advancement of the culinary arts. These advertising-free forums are provided free of charge through donations from Society members. Anyone may read the forums, but to post you must create a free account.

Introduction from "On Food and Cooking"


Bux

Recommended Posts

Harold McGee and Scriber, his publisher, have graciously consented to post the introduction to the vastly revised and expanded new edition of On Food and Cooking, here on eGullet.org.

gallery_9_234_1097871708.jpg

INTRODUCTION

Cooking and Science, 1984 and 2000

This is the revised and expanded second edition of a book that I first published in 1984, twenty long years ago. In 1984, canola oil and the computer mouse and compact discs were all novelties. So was the idea of inviting cooks to explore the biological and chemical insides of foods. It was a time when a book like this really needed an introduction!

Twenty years ago the worlds of science and cooking were neatly compartmentalized. There were the basic sciences, physics and chemistry and biology, delving deep into the nature of matter and life. There was food science, an applied science mainly concerned with understanding the materials and processes of industrial manufacturing. And there was the world of small-scale home and restaurant cooking, traditional crafts that had never attracted much scientific attention. Nor did they really need any. Cooks had been developing their own body of practical knowledge for thousands of years, and had plenty of reliable recipes to work with.

I had been fascinated by chemistry and physics when I was growing up, experimented with electroplating and Tesla coils and telescopes, and went to Caltech planning to study astronomy. It wasn’t until after I’d changed directions and moved on to English literature—and had begun to cook—that I first heard of food science. At dinner one evening in 1976 or 1977, a friend from New Orleans wondered aloud why dried beans were such a problematic food, why indulging in red beans and rice had to cost a few hours of sometimes embarrassing discomfort. Interesting question! A few days later, working in the library and needing a break from 19th-century poetry, I remembered it and the answer a biologist friend had dug up (indigestible sugars), thought I would browse in some food books, wandered over to that section, and found shelf after shelf of strange titles. Journal of Food Science. Poultry Science. Cereal Chemistry. I flipped through a few volumes, and among the mostly bewildering pages found hints of answers to other questions that had never occurred to me. Why do eggs solidify when we cook them? Why do fruits turn brown when we cut them? Why is bread dough bouncily alive, and why does bounciness make good bread? Which kinds of dried beans are the worst offenders, and how can a cook tame them? It was great fun to make and share these little discoveries, and I began to think that many people interested in food might enjoy them. Eventually I found time to immerse myself in food science and history and write On Food and Cooking: The Science and Lore of the Kitchen.

As I finished, I realized that cooks more serious than my friends and I might be skeptical about the relevance of cells and molecules to their craft. So I spent much of the introduction trying to bolster my case. I began by quoting an unlikely trio of authorities, Plato, Samuel Johnson, and Jean Anthelme Brillat-Savarin, all of whom suggested that cooking deserves detailed and serious study. I pointed out that a 19th-century German chemist still influences how many people think about cooking meat, and that around the turn of the 20th century, Fannie Farmer began her cookbook with what she called “condensed scientific knowledge” about ingredients. I noted a couple of errors in modern cookbooks by Madeleine Kamman and Julia Child, who were ahead of their time in taking chemistry seriously. And I proposed that science can make cooking more interesting by connecting it with the basic workings of the natural world.

A lot has changed in twenty years! It turned out that On Food and Cooking was riding a rising wave of general interest in food, a wave that grew and grew, and knocked down the barriers between science and cooking, especially in the last decade. Science has found its way into the kitchen, and cooking into laboratories and factories.

In 2004 food lovers can find the science of cooking just about everywhere. Magazines and newspaper food sections devote regular columns to it, and there are now a number of books that explore it, with Shirley Corriher’s 1997 CookWise remaining unmatched in the way it integrates explanation and recipes. Today many writers go into the technical details of their subjects, especially such intricate things as pastry, chocolate, coffee, beer, and wine. Kitchen science has been the subject of television series aired in the United States, Canada, the United Kingdom, and France. And a number of food molecules and microbes have become familiar figures in the news, both good and bad. Anyone who follows the latest in health and nutrition knows about the benefits of antioxidants and phytoestrogens, the hazards of trans fatty acids, acrylamide, E. coli bacteria, and mad cow disease.

Professional cooks have also come to appreciate the value of the scientific approach to their craft. In the first few years after On Food and Cooking appeared, many young cooks told me of their frustration in trying to find out why dishes were prepared a certain way, or why ingredients behave as they do. To their traditionally trained chefs and teachers, understanding food was less important than mastering the tried and true techniques for preparing it. Today it’s clearer that curiosity and understanding make their own contribution to mastery. A number of culinary schools now offer “experimental” courses that investigate the whys of cooking and encourage critical thinking. And several highly regarded chefs, most famously Ferran Adrià in Spain and Heston Blumenthal in England, experiment with industrial and laboratory tools—gelling agents from seaweeds and bacteria, non-sweet sugars, aroma extracts, pressurized gases, liquid nitrogen—to bring new forms of pleasure to the table.

As science has gradually percolated into the world of cooking, cooking has been drawn into academic and industrial science. One effective and charming force behind this movement was Nicholas Kurti, a physicist and food lover at the University of Oxford, who lamented in 1969: “I think it is a sad reflection on our civilization that while we can and do measure the temperature in the atmosphere of Venus, we do not know what goes on inside our soufflés.” In 1992, at the age of 84, Nicholas nudged civilization along by organizing an International Workshop on Molecular and Physical Gastronomy at Erice, Sicily, where for the first time professional cooks, basic scientists from universities, and food scientists from industry worked together to advance gastronomy, the making and appreciation of foods of the highest quality.

The Erice meeting continues, renamed the “International Workshop on Molecular Gastronomy ‘N. Kurti’ ” in memory of its founder. And over the last decade its focus, the understanding of culinary excellence, has taken on new economic significance. The modern industrial drive to maximize efficiency and minimize costs generally lowered the quality and distinctiveness of food products: they taste much the same, and not very good. Improvements in quality can now mean a competitive advantage; and cooks have always been the world’s experts in the applied science of deliciousness. Today, the French National Institute of Agricultural Research sponsors a group in Molecular Gastronomy at the Collège de France (its leader, Hervé This, directs the Erice workshop); chemist Thorvald Pedersen is the inaugural Professor of Molecular Gastronomy at Denmark’s Royal Veterinary and Agricultural University; and in the United States, the rapidly growing membership of the Research Chefs Association specializes in bringing the chef’s skills and standards to the food industry.

So in 2004 there’s no longer any need to explain the premise of this book. Instead, there’s more for the book itself to explain! Twenty years ago, there wasn’t much demand for information about extra-virgin olive oil or balsamic vinegar, farmed salmon or grass-fed beef, cappuccino or white tea, Sichuan pepper or Mexican mole, sake or well-tempered chocolate. Today there’s interest in all these and much more. And so this second edition of On Food and Cooking is substantially longer than the first. I’ve expanded the text by two thirds in order to cover a broader range of ingredients and preparations, and to explore them in greater depth. To make room for new information about foods, I’ve dropped the separate chapters on human physiology, nutrition, and additives. Of the few sections that survive in similar form from the first edition, practically all have been rewritten to reflect fresh information, or my own fresh understanding.

This edition gives new emphasis to two particular aspects of food. The first is the diversity of ingredients and the ways in which they’re prepared. These days the easy movement of products and people makes it possible for us to taste foods from all over the world. And traveling back in time through old cookbooks can turn up forgotten but intriguing ideas. I’ve tried throughout to give at least a brief indication of the range of possibilities offered by foods themselves and by different national traditions.

The other new emphasis is on the flavors of foods, and sometimes on the particular molecules that create flavor. Flavors are something like chemical chords, composite sensations built up from notes provided by different molecules, some of which are found in many foods. I give the chemical names of flavor molecules when I think that being specific can help us notice flavor relationships and echoes. The names may seem strange and intimidating at first, but they’re just names and they’ll become more familiar. Of course people have made and enjoyed well seasoned dishes for thousands of years with no knowledge of molecules. But a dash of flavor chemistry can help us make fuller use of our senses of taste and smell, and experience more—and find more pleasure—in what we cook and eat.

Now a few words about the scientific approach to food and cooking and the organization of this book. Like everything on earth, foods are mixtures of different chemicals, and the qualities that we aim to influence in the kitchen—taste, aroma, texture, color, nutritiousness—are all manifestations of chemical properties. Nearly two hundred years ago, the eminent gastronome Jean Anthelme Brillat-Savarin lectured his cook on this point, tongue partly in cheek, in The Physiology of Taste:

You are a little opinionated, and I have had some trouble in making you understand that the phenomena which take place in your laboratory are nothing other than the execution of the eternal laws of nature, and that certain things which you do without thinking, and only because you have seen others do them, derive nonetheless from the highest scientific principles.

The great virtue of the cook’s time-tested, thought-less recipes is that they free us from the distraction of having to guess or experiment or analyze as we prepare a meal. On the other hand, the great virtue of thought and analysis is that they free us from the necessity of following recipes, and help us deal with the unexpected, including the inspiration to try something new. Thoughtful cooking means paying attention to what our senses tell us as we prepare it, connecting that information with past experience and with an understanding of what’s happening to the food’s inner substance, and adjusting the preparation accordingly.

To understand what’s happening within a food as we cook it, we need to be familiar with the world of invisibly small molecules and their reactions with each other. That idea may seem daunting. There are a hundred-plus chemical elements, many more combinations of those elements into molecules, and several different forces that rule their behavior. But scientists always simplify reality in order to understand it, and we can do the same. Foods are mostly built out of just four kinds of molecules—water, proteins, carbohydrates, and fats. And their behavior can be pretty well described with a few simple principles. If you know that heat is a manifestation of the movements of molecules, and that sufficiently energetic collisions disrupt the structures of molecules and eventually break them apart, then you’re very close to understanding why heat solidifies eggs and makes foods tastier.

Most readers today have at least a vague idea of proteins and fats, molecules and energy, and a vague idea is enough to follow most of the explanations in the first 13 chapters, which cover common foods and ways of preparing them. Chapters 14 and 15 then describe in some detail the molecules and basic chemical processes involved in all cooking; and the Appendix gives a brief refresher course in the basic vocabulary of science. You can refer to these final sections occasionally, to clarify the meaning of pH or protein coagulation as you’re reading about cheese or meat or bread, or else read through them on their own to get a general introduction to the science of cooking.

Finally, a request. In this book I’ve sifted through and synthesized a great deal of information, and have tried hard to double-check both facts and my interpretations of them. I’m greatly indebted to the many scientists, historians, linguists, culinary professionals, and food lovers on whose learning I’ve been able to draw. I will also appreciate the help of readers who notice errors that I’ve made and missed, and who let me know so that I can correct them. My thanks in advance.

As I finish this revision and think about the endless work of correcting and perfecting, my mind returns to the first Erice workshop and a saying shared by Jean-Pierre Philippe, a chef from Les Mesnuls, near Versailles. The subject of the moment was egg foams. Chef Philippe told us that he had thought he knew everything there was to know about meringues, until one day a phone call distracted him and he left his mixer running for half an hour. Thanks to the excellent result and to other surprises throughout his career, he said, Je sais, je sais que je sais jamais: “I know, I know that I never know.” Food is an infinitely rich subject, and there’s always something about it to understand better, something new to discover, a fresh source of interest, ideas, and delight.

Copyright © Harold McGee 2004. From On Food and Cooking: The Science and Lore of the Kitchen, published by Scribner, November 2004. Posted on eGullet.org with the kind permission of the author and publisher.

Learn more about Harold McGee here.

Robert Buxbaum

WorldTable

Recent WorldTable posts include: comments about reporting on Michelin stars in The NY Times, the NJ proposal to ban foie gras, Michael Ruhlman's comments in blogs about the NJ proposal and Bill Buford's New Yorker article on the Food Network.

My mailbox is full. You may contact me via worldtable.com.

Link to comment
Share on other sites

Guest
This topic is now closed to further replies.
×
×
  • Create New...