Jump to content
  • Welcome to the eG Forums, a service of the eGullet Society for Culinary Arts & Letters. The Society is a 501(c)3 not-for-profit organization dedicated to the advancement of the culinary arts. These advertising-free forums are provided free of charge through donations from Society members. Anyone may read the forums, but to post you must create a free account.

maggiethecat

Cookbooks – How Many Do You Own? (Part 5)

Recommended Posts

I have a lot of really good cookbooks and I want to use them instead of the internet so I use my Eat Your Books account.  It is a fantastic resource and many users make good comments about the recipes.

  • Like 5

Share this post


Link to post
Share on other sites
Posted (edited)

@Okanagancook, Eat Your Books no longer has a lifetime membership and it's really, really pricey. And I have an issue with someone else controlling my data. I mean that I'm the one who'll have to organize all that stuff. What if I live another 40 years? OK, unlikely. How about 30? Or even 20?

 

Think of all the used cookbooks that could buy! 🤣


Edited by TdeV (log)

Share this post


Link to post
Share on other sites

 I find the site very useful.  I am there everyday.

I like the daily articles, book reviews and comments about recipes made by members which are usually right on.

  For all that I am not sure I would classify it as really, really pricey.

 

  • Like 1

Share this post


Link to post
Share on other sites

When EYB came along, I was at a point where it was hard to justify purchasing any more cookbooks because it was easier to look up recipes on the internet, though the results were often of lesser quality than what was in my cookbook collection. 

My membership was the key to making good use of my books and generating quality search results from the blogs, magazines, newspaper columns, etc. that I follow. 

The current annual membership of $30/year is around the cost of one newly published cookbook.  Certainly more pricy than what I paid for a lifetime membership but it's a trade-off I'd make in a minute.  

@TdeV, it sounds like you would be happier investing that $30/year in lots of used cookbooks.  I can see that side of it but I'm happier making good use of the collection I own and adding to it judiciously.   It's all good!

  • Like 1

Share this post


Link to post
Share on other sites

I also bought a life time membership at launch...best $50 I’ve ever spent.

I agree about making it a breeze to utilize the cookbooks owned.  Really, less than the price of a quality magazine.

It is easy to set your cookbooks up in your library.

  • Like 1

Share this post


Link to post
Share on other sites

On the subject, can anyone tell me how to organize Kindle cookbooks (or any books, though it happens all but two or three of mine are cookbooks) on the iPad app by category?  In other words is there a way to make subfolders of books on the Kindle app?

 

Share this post


Link to post
Share on other sites
3 hours ago, JoNorvelleWalker said:

On the subject, can anyone tell me how to organize Kindle cookbooks (or any books, though it happens all but two or three of mine are cookbooks) on the iPad app by category?  In other words is there a way to make subfolders of books on the Kindle app?

 

 

I made a bookmark called Kindle and I apply it to all my Kindle books when I enter them.  If you've got a huge collection and need to go back and mark them, it's a bit of a bother but once it's done, it's handy.  You can pull up the whole list of Kindle books or use it in the search criteria for a book or recipe.

Share this post


Link to post
Share on other sites
Posted (edited)
21 minutes ago, blue_dolphin said:

 

I made a bookmark called Kindle and I apply it to all my Kindle books when I enter them.  If you've got a huge collection and need to go back and mark them, it's a bit of a bother but once it's done, it's handy.  You can pull up the whole list of Kindle books or use it in the search criteria for a book or recipe.

 

I'm sorry, I don't understand.  I think what I'd like to do is, in Kindle-speak, make collections.  I don't know how to do this.  Does it involve bookmarks?

 

Bonus question:  I've marked pages with bookmarks but I don't know how to use them.

 

 

Edit:  I have 202 Kindle books uncollected.

 


Edited by JoNorvelleWalker (log)

Share this post


Link to post
Share on other sites
Posted (edited)

My husband and I read a lot of ebooks. He reads on a Kindle and I read on Android. We both use Calibre (http://calibre-ebook.com/) to save the library (where you can add your own keywords), although he loads the Kindle ebook before connecting with Calibre and I load the ebook after uploading to Calibre. To interface between Calibre and the ebook reader, we both use Calibre Companion (http://www.multipie.co.uk/calibre-companion/). This enables me to upload ebooks to my Android tablet and my iphone from the same Calibre library management system. Much more useful than the straight Kindle app.

 

Edit: I have more than 1,000 ebooks, mostly not cookbooks.

Edit: Library management does not include the contents of the ebooks.


Edited by TdeV Clarity (log)

Share this post


Link to post
Share on other sites
Posted (edited)
35 minutes ago, JoNorvelleWalker said:

 

I'm sorry, I don't understand.  I think what I'd like to do is, in Kindle-speak, make collections.  I don't know how to do this.  Does it involve bookmarks?

 

Bonus question:  I've marked pages with bookmarks but I don't know how to use them.

 

 

Edit:  I have 202 Kindle books uncollected.

 

 

Open the Kindle App. Press and hold the book title. Options come up for what to do with the book. Click on "add to collection." A list of your collections will come up. Either click on an existing collection or click on the plus sign in a circle at the top. This allows you to add a new collection name.

 

You can put the same book into multiple collections.

 

For my 2057 cookbooks, I use the following collections.

 

US Chefs

Italian

Pastry, Bread & Desserts

Vegetables and Vegetarian

Food Non Fiction

Spanish and Portuguese

Food Science, Safety, and Processing

Seafood

Ingredients Cookbooks

UK Chefs

Sauces

Coffee

BBQ and Smoking

How to Cook

Diet

Australian Chefs

Appetisers

Cheese

Asian

Vietnamese

French

Techniques

Charcuterie, Pickling, and Fermenting

Mexican and Sth American

Sous Vide Cooking

Scandinavian

Special Occasion

Street Food

Indian

Spices

Korean

Japanese

Sandwiches

Burgers and Hot Dogs

Middle Eastern and African

Chinese

Eastern European

Meat Cookery

Dumplings

Pizza

Food Styling and Photography

Caribbean

Salads

Thai

Russian

Soup

Indonesian

Jewish

Modernist

Mediterranean

Greek

German

Cajun and Creole

Desserts

Irish

Juices

Laotian

Malaysian, Singapore, Indonesia, Sri Lanka

Nordic

Other European

Seasonal Cooking

Share Plates

Small Plates

Snacks

Southern Cooking

Stews

Wine and Drinks (actually this is broken down into a number of smaller categories because of my study interests).

 

Hope this helps.

 

 


Edited by nickrey (log)
  • Like 2
  • Confused 1

Share this post


Link to post
Share on other sites

@nickrey you win the internet.  Thanks, I think I understand.

 

But I'm not sure I could find 2057 Kindle cookbooks I wanted even if they were free.

 

 

Share this post


Link to post
Share on other sites

@nickrey, marvellous collection! How do you find a particular recipe or, for example, a recipe using sweet potatoes?

Share this post


Link to post
Share on other sites
16 hours ago, blue_dolphin said:

 

I made a bookmark called Kindle and I apply it to all my Kindle books when I enter them.  If you've got a huge collection and need to go back and mark them, it's a bit of a bother but once it's done, it's handy.  You can pull up the whole list of Kindle books or use it in the search criteria for a book or recipe.

 

@blue_dolphin I think I figured out that you were answering about marking books added to Eat Your Books, and I was asking about marking books added to the Kindle app so that one could locate the books more easily.

 

For example:  if I wanted to cook kale* and entered "kale" into EYB the first hit that comes up is "Seared beets with walnuts over wilted kale and micro greens" from Vegetable Literacy by Deborah Madison.  I have walnuts, so I'd need to find the book.  I open my Kindle app and am presented with piles and piles of pretty books to scroll through.  Wouldn't it be nice if I could select a subject category "vegetables" or an alphabetical category "M", say, for the author's last name?  (Dewey Decimal number wouldn't help me much.)

 

In my example I found Vegetable Literacy without too much trouble (just a bunch of scrolling) but it is not always so.  @nickrey came up with the solution.  Now all I need is the discipline to carry it out.

 

 

*not that I would cook kale of course.

 

  • Like 1
  • Haha 1

Share this post


Link to post
Share on other sites
5 hours ago, TdeV said:

@nickrey, marvellous collection! How do you find a particular recipe or, for example, a recipe using sweet potatoes?

 

By happenstance I opened Deborah Madison's Vegetable Literacy to the chapter on sweet potatoes.

 

But to give an answer to the question, use Eat Your Books to find the recipe.  Simply replace "kale" with "sweet potatoes" in my example above.  I might even eat the result.

 

Share this post


Link to post
Share on other sites
11 hours ago, TdeV said:

@nickrey, marvellous collection! How do you find a particular recipe or, for example, a recipe using sweet potatoes?

In eatyourbooks. Simply type sweet potatoes into the search function. I have 2,841 recipes featuring sweet potatoes. I suspect I'd narrow it down with a few further ingredients.

 

I often search through the recipes, sometimes look at the book, but often create a variation on the recipe. I wouldn't be able to do this without having read the books and cooked from them previously.

  • Like 1

Share this post


Link to post
Share on other sites

Sadly I come up with but 353 recipes for sweet potatoes.  So much I am missing.  However for what it's worth I do get 9 results for hartshorn.

 

Share this post


Link to post
Share on other sites
6 hours ago, JoNorvelleWalker said:

Sadly I come up with but 353 recipes for sweet potatoes.  So much I am missing.  However for what it's worth I do get 9 results for hartshorn.

 

I get 28 and don't even know what it is.

  • Like 1

Share this post


Link to post
Share on other sites

I didn't know about Eat Your Books, and I can't overstate how excited I am!!!

 

I'm fixin' to give subscriptions for Christmas!

  • Like 2

Share this post


Link to post
Share on other sites

@SLB you will love it.  That is where I start when I want to make something.  Take the time to learn the search capabilities...it will save you ton of time.  Also, check the notes of the recipe, people are very good about commenting.

  • Like 1

Share this post


Link to post
Share on other sites
4 hours ago, Okanagancook said:

@SLB you will love it.  That is where I start when I want to make something.  Take the time to learn the search capabilities...it will save you ton of time.  Also, check the notes of the recipe, people are very good about commenting.

 

Anything I should know about the search capabilities?

 

Share this post


Link to post
Share on other sites

The whole Search Section of Help is a must read.  

 

I recently learned that you can search a cookbook author's recipes from all the books in your Library.  For example you want a lamb dish by Ottolenghi.  Go to your bookshelf and recipes then type in Ottolenghi lamb and up come all his recipes with lamb.  One can then go on to use the "filter by" section narrow things even more.

 

 

Or using the Boolean search terms can really help to narrow the search down.  

http://support.eatyourbooks.com/customer/en/portal/articles/990426-using-boolean-search-terms

 

 

  • Like 2

Share this post


Link to post
Share on other sites

  • Similar Content

    • By boilsover
      It's bad enough correcting common zombie cookware misconceptions.  But when a legitimate food expert like Mark Bittman spouts complete nonsense about all tinned cookware containing lead, it's downright dismaying.  Likewise when salespeople and companies tell that eternal doozer:  "Cast iron heats evenly."
       
      The winner for 2019--so far--however, has to be Florence Fabricant, New York Times columnist and author of 12 cookbooks.  In her January 22, 2019 issue of her column "Front Burner", Ms. Fabricant gushes over the carbon steel skillet made by Made In.  Among other reasons to recommend it:
       
      "It’s a good conductor (it can be used on an induction cooktop) and has heft..."
       
      What?  Surely Fabricant knows carbon steel, like any steel, is not only *not* a good conductor, it's a *terrible* one.   In fact it's the worst metal pans are made of.  If she doesn't, she needs to take a remedial physics course.
       
      And perhaps she was under a deadline to push this out, but what gives with the non sequitur explanatory parenthetical?  Does she really believe that good conductivity and induction compatibility are the same or even closely related?
       
      Doubtless, someone, somewhere has already taken this nonsense for Gospel and spread it around.  "Oh, boy!  I can't wait for my new conductive steel skillet to be delivered!" 
      Do you see, Larry?  Do you see what happens when you make stuff up?
       
      https://www.nytimes.com/2019/01/22/dining/made-in-carbon-steel-skillet.html
       
    • By Cookwhoplaysdrums
      Can anyone suggest me some good books related to Gastronomy, food history, culture, recipes based on different cultures. 
      Also recommend the best food magazine subscriptions. 
    • By boilsover
      I. Introduction
       
      This article reviews the 3500W all-metal commercial induction single-hob hotplate by Panasonic, which I believe is the first “all-metal” unit to hit the U.S. market. Where appropriate, it is also compared with another commercial single-hob, the 1800W Vollrath Mirage Pro Model 59500P.
       
      Some background is in order. Heretofore, induction appliances would only “work” with cookware which is ferromagnetic. Bare and enameled cast iron, carbon steel, enameled steel and some stainless steels were semi-dependable for choices, and the cookware industry has worked hard to make most of its lines induction compatible. But alas, not all cookware, past and present, has worked; copper and aluminum don’t, at least without a separate interface disk or it’s own ferromagnetic base layer.
       
      The reason why non-ferromagnetic cookware hasn’t worked on induction is technical, but it relates to the magnetic field and what’s called the “skin depth” of the pan’s outermost material. With copper or aluminum, the field will not excite the metals’ molecules to the extent that their friction will generate useful heat to cook food. And the way the appliances come equipped, unless the appliance detects something sufficiently large and ferromagnetic, they will not produce any field at all. Therefore, to the consternation of many cooks, pro and amateur, older (and in the opinion of some, better) cookware needs to be retired and replaced if/when they wish to switch to an induction appliance. Some cooks don’t mind, but others who, like me, have invested heavily in copper and are habituated to it and aluminum, would forego induction altogether rather than discard our cookware.
       
      But what we’ve really meant—all along--when we say or write that only ferromagnetic cookware will “work” on induction is that the frequency chosen for our appliances (20-24kHz) will not usefully excite other metals. If that frequency is increased to, say, 90-110kHz , then suddenly the impossible happens: aluminum and copper, with absolutely no ferromagnetic content, will heat in a way that is eminently useful in the kitchen.
      While Panasonic has made dual-frequency induction hotplates available in Japan for several years now, they didn’t make it available here until recently (My unit indicates it was manufactured in early 2016!). I speculate the reason for the delay relates to the detection circuitry and the switches that determine the frequency at which the field will operate.

      The introduction of all-metal induction in USA is especially interesting because it allows a direct comparison of cookware of all (metal) types. For instance, cookware nerds have long debated how copper cookware on a gas compares with disk-based stainless on induction. While the veil has not completely lifted (for that we would need extremely precise gas energy metering), we now have the ability to measure and compare copper, aluminum, clad and disk-based on the same induction hob.
       
      II. Dimensions, Weight & Clearances
       
      The Panasonic, being a true commercial appliance, is considerably larger than most consumer and crossover hotplates. It stands 6 inches tall overall, and on relatively tall (1.25”) feet, so that there is space for ample air circulation under the unit. It is 20.25 inches deep overall, including a standoff ventilation panel in back, and the angled control panel in front. It is 15” wide, and weighs in at a hefty 30.25 pounds. Suffice it to say, the Panasonic is not practically portable.

      The KY-MK3500’s Ceran pan surface is 14.25 inches wide by 14.5 inches deep, almost 43% larger in area than the VMP’s glass. Panasonic tells me they have no recommended maximum pan diameter or weight, but the tape tells me that a 15” diameter pan would not overhang the unit’s top (Compare the VMP, which can accept a maximum pan base of 10 7/8”). Common sense tells me that—unless the glass is well-braced underneath in many places, 25-30 pounds of total weight might be pushing it.
       
      For those who might consider outfitting their home kitchens with one or more of these units, in addition to having 20 amp 240v (NEMA #6-20R receptacles) electrical circuits for each appliance, 39 1/2 inches of overhead clearance is required to combustible material (31 ½” to incombustibles) and 2 inches to the back and sides (0” to incombustibles). The overhead clearance requirement and the tall 6” unit height call for no (or only very high) cabinetry and careful design of a “well” or lower countertop/table that will lower the Ceran surface to a comfortable cooking height. In other words, a tall pot on this unit on a regular-height counter might be a problem for a lot of cooks.
      III. Features

      A. Display
       
      The KY-Mk3500 has an angled 8-key spillproof keypad and red LED numerical display. The keys are large, raised and their markings are legible. All but the four Up/Down keys have their own inset indicator lights, which indicate power, mode and memory operation.
       
      The numerical display is large and bright. The numerical display area is divided between time (XX:XX) to the user’s left and power/temp to the user’s right. If the timer or program features are activated, the numerical display shows both the set time and the power/temperature. There is also a small “Hot Surface” LED icon on the panel.
      The Panasonic also actually uses the Ceran surface as a display of sorts. That is, there is a lighted circle just outside the faint positioning circle, which glows red whenever the unit is operating, awaiting a pan, or the Ceran is hot. Panasonic also claims that this display also changes brightness with the set power level, implying that the operator can judge the heat setting by a glance. Thus this display serves three purposes: (a) pan positioning; (b) burn safety; and (c) intensity.

      B. Safety Features
       
      As one would expect, there are a variety of safety features built into this appliance. In most cases, these features are controlled by detection circuits, some fixed, some defeatable/variable. This being a commercial unit, Panasonic has set the unit’s defaults with commercial users’ convenience in mind. If consumers want the full spectrum of safety settings, they need to vary these defaults. For instance, if a home cook wants to make sure the unit powers off if the pan is removed and not replaced within 3 minutes, they have to manually vary a default. Likewise if the operator wants the power to automatically shut off after 2 hours of no changes. But others, like the basic “Is there a pan there?” detection and overheat shutoff, are there no matter what and cannot be defeated.
      C. Settings & Programming

      The KY-MK3500 features both power and temperature settings. For “regular” induction, there are 20 power settings, which range from 50 watts to 3500 watts. For non-ferromagnetic pans, there are 18 power settings, which range from 60 watts to 2400 watts. The display shows these settings in numerals 1-20 and 1-18 respectively. When the power is toggled on, the unit defaults to Setting 14 in both frequencies.

      The temperature settings are the same in both modes, with 22 selectable temperatures from 285F (140C) to 500F (260C). Other than for the very lowest temperature setting, each setting increase results in a 10F temperature increase. Usefully, the display shows the set temperature, not 1-22; and until the set temperature is reached, the display indicates “Preheat”. The unit beeps when it reaches the set temperature. The Panasonic measures pan temperature using an IR sensor beneath the glass; this sensor sits about 1 inch outside the centerpoint of the painted positioning markings, yet inside of the induction coil.

      The timer operation is fast and intuitive. Once the power or temperature is set and operating, the operator merely keys the timer’s dedicated up/down buttons, and the timer display area activates. Timer settings are in any 30-second interval between 30 seconds and 9 ½ hours, and the display will show remaining time. The beeps at the end of cooking are loud.
       
      There are nine available memory programs, which can be set for either power or temperature, along with time. Programming entails pressing and holding the Program mode button, selecting the program (1-9), then picking and setting the power or temperature, then setting the timer, and finally pressing and holding the Program button again. After that, to use any of the entered programs, you simply press the Program button, select which program, and the unit will run that program within 3 seconds.
       
      In addition to Heat-Time programmability, the KY-MK3500 also provides the ability to vary 9 of the unit’s default settings: (1) Decreasing the power level granularity from 20 to 10; (2) Changing the temperature display to Celsius; (3) Enabling a long cook time shutoff safety feature; (4) Enabling the main power auto shutoff feature; (5) Disabling the glowing circle; (6) Lowering or disabling the auditory beep signals’ volume; (7) Customizing the timer finish beep; (8) Customizing the Preheat notification beep; and (9) Customizing the interval for filter cleanings.
       
      D. Maintenance
       
      The KY-MK3500 has a plastic air intake filter which can be removed and cleaned. This is not dishwashable. This filter is merely a plastic grate with ¼” square holes, so it is questionable what exactly —besides greasy dust bunnies—will be filtered. Panasonic recommends the filter be cleaned once a week. Besides that, the Ceran surface and stainless housing clean just like other appliances.
       
      IV. Acceptable Cookware
       
      Panasonic claims the unit will accept cast iron, enameled iron, stainless steel, copper, and aluminum with two provisos. First, very thin aluminum and copper may “move” on the appliance. And second, thin aluminum pans may “deform”. Panasonic does not address carbon steel pans, but I verified that they do indeed work. They also warn of the obvious fact that glass and ceramics will not work.
       
      Buyers are also warned against using cookware of specific cookware bottom shapes: round, footed, thin, and domed. Trying to use these, Panasonic warns, may disable safety features and reduce or eliminate pan heating.
       
      As far as minimum pan diameter goes, Panasonic claims the KY-MK3500 needs 5” diameter in ferromagnetic pans, and 6” in copper or aluminum ones. My own tests have shown that in fact the unit will function with a cast iron fondue pot, the base of which is only 4 1/8” in diameter, and also works with a copper saucepan, the base of which is almost exactly 5” in diameter. Obviously, the field will be most active at the very edges of such small pans, but they do function.
       
      V. Evaluation in Use

      I can say that not only does the Panasonic KY-MK3500 “work” with copper and aluminum pans, but that it works very well with them. Thermally, thick gauge conductive material pans perform in close emulation of the same pans on gas, even though there are no combustion gasses flowing up and around the pan. I found this startling.
       
      Nevertheless, a searching comparison between copper and ferromagnetic pans on this unit isn’t as straightforward as one might expect. The Panasonic is capable of dumping a full 3500 watts into ferromagnetic pans, but is limited to 2400 watts for aluminum and copper. Despite copper’s and aluminum’s superiorities in conductivity, that extra 1100 watts is going to win every speed-boil race.
       
      I initially thought I could handicap such a race simply by using the temperature setting and comparing the times required to achieve a “preheat” in a pans of cold water. Alas, no—the Panasonic’s IR function signified the copper pan was preheated to 350F before the water even reached 70F! Obviously, the entire thermal system of cold food in a cold pan needs to come to equilibrium before the Panasonic’s temperature readout becomes meaningful.

      A. Temperature Settings
       
      Unfortunately, with every pan I tried, the temperature settings were wildly inaccurate for measuring the temperature of the food. I heated 2 liters of peanut oil in a variety of pots, disk-base, enameled cast iron enameled steel, and copper. I thought it might be useful to see how close to 350F and 375F the settings were for deep frying. The oil in a Le Creuset 5.5Q Dutch oven set to 350F never made it past 285F, and it took 40:00 to get there. I kept bumping up the setting until I found that the setting for 420F will hold the oil at 346F. A disk-based pot didn’t hit 365F until the temperature setting was boosted to 400F. The only pan which came remotely close to being true to the settings was a 2mm silvered copper oven, which heated its oil to 327F when the Panasonic was set for 350F, and 380F when set for 410F.
       
      The temperature function was a lot closer to true when simply preheating an empty pan. With a setting of 350F, all the shiny stainless pans heated to just a few degrees higher (about 353-357F) and held there. This is useful for judging the Leidenfrost Point (which is the heat at which you can oil your SS and have it cook relatively nonstick) and potentially for “seasoning” carbon steel, SS and aluminum, but not much else, since it doesn’t translate to actual food temperature. There’s also the issue of the temperature settings *starting* at 285F, so holding a lower temperature for, e.g., tempering chocolate or a sous vide bath, or even a simmer would be by-guess-by-golly just like any other hob—your only resort is lots of experience with lower *power* settings.
       
      With heat-tarnished copper, a 350F setting resulted in a wide swinging between 353F and 365F, which I attribute to the copper shedding heat far faster than the other constructions, once the circuit stops the power at temperature. Then, when the circuit cycles the power back on, the copper is so responsive that it quickly overshoots the setting. Aluminum, on the other hand, *undershot*, the 350F setting, registering a cycle of 332-340F.

      I conclude that the IR sensor is set for some particular emissivity, probably for that of stainless steel. If true, the Panasonic, even though it automatically switches frequencies, does not compensate for the different emissivities of copper and aluminum. And even if Panasonic added dedicated aluminum and copper IR sensors, there is enough difference between dirty and polished that the added cost would be wasted. Bottom line here: the temperature setting mode is of extremely low utility, and should not be trusted.
       
      B. Power Mode – Pan Material Comparisons
       
      Given the differences in power setting granularity and maximum power between the two frequencies, it is difficult to assess what X watts into the pot means in, say, a copper-versus-clad or –disk showdown. What is clear, however, is that Setting X under disk and clad seems “hotter” than the same setting under copper and aluminum.

      I will need to precisely calibrate the Panasonic for wattage anyway for the hyperconductivity project, so I will obtain a higher-powered watt meter to determine the wattage of every power setting for both frequencies. Until then, however, the only way I can fairly handicap a race is to apply a reduction figure to the ferromagnetic setting (2400W being 69% of 3500W). Given that we know the wattage at the maximum settings, we can infer that Setting 14 (actually 13.8) on the 20-step ferromagnetic range iis approximately the same heat output as the maximum setting (18) for copper/aluminum.

      The boil times for 4 liters of 50F water in 10” diameter pots shocked me. The 10” x 3mm tinned copper pot’s water reached 211F in 36:41. Not an especially fast time at 2400 watts. The 10” disk-based pressure cooker bottom? Well, it didn’t make it—it took an hour to get to 208F and then hung there. So that left me wondering if the Panasonic engineers simply decided that 2400 watts was enough for copper and aluminum. I have a theory why the copper pot boiled and the SS one didn’t under the same power, but getting into that’s for another time.

      C. Evenness Comparisons
       
      The wires which generate the induction field are wound in a circular pattern; when energized, they create a torus-shaped magnetic field. The wound coil is constructed with an empty hole at its center. As matters of physics, the magnetic field’s intensity drops off extremely fast as a function of the distance from the coil; a few millimeters above the Ceran, the field is so weak no meaningful heat will be generated. This means that most induction cooktops heat *only* the very bottom of pans, and in a distinct 2-dimensional “doughnut” shape.

      All of the above can result in a pan having a cooler central spot, a hotter ring directly over the coil, and a cooler periphery outside the coil. It is left to the cookware to try to even out these thermal discontinuities when cooking. Some materials and pan constructions are better at this than others: the successful constructions utilize more highly-conductive metals such as aluminum and copper, but unless the material is very thick, there can be a ring-shaped hotspot that can scorch food.
      Until the Panasonic arrived to market, hotspot comparisons between ferromagnetic and aluminum/copper pans depended largely on comparing induction’s flat, more discrete heat ring with gas’s more diffuse, 3-dimensional one. Dodgeball-style debate ensued, with few clear conclusions. But now, for the first time, equally-powered flat heat rings in two different frequencies allow us to directly compare evenness in ferromagnetic and aluminum/copper cookware.

      The simplest and easiest way to assess cookware evenness is the “scorchprint”, which does not require infrared or other advanced thermal imaging equipment. I’ve posted on how to conduct scorchprinting elsewhere, but basically a pan is evenly dusted with flour; heat is applied to the pan bottom. As the flour is toasted, any hotspots visually emerge, giving the viewer a useful general idea of evenness.
       
      I will later post the photos of scorchprints I made of 4 different pans run using the Panasonic KY-MK3500: (1) a Demeyere 28cm Proline 5* clad frypan; (2) a Fissler Original Profi disk-base 28cm frypan; a 6mm aluminum omelet pan; and (4) a 32cm x 3.2mm Dehillerin sauté. To make it a fair race, I heated all the pans at 2400W until they reached 450F, and then backed off the power setting to maintain 450F. I did this in order not to compromise my saute’s tin lining. As you will see, both the clad Demeyere and the disk-based Fissler did print the typical brown doughnut, with a cooler center and periphery. By far the most even was the thick, all-aluminum pan, which actually was even over its entirety—even including the walls. The copper sauté was also quite even, although its larger size and mass really dissipated heat; once 450F was dialed in, no more browning happened, even after 30 minutes.
       
      I conclude that the straightgauge pans were far more effective at shunting heat to their peripheries and walls (and also to some extent into the air) than the clad and disk-based pans. The latter accumulated their heat with most of it staying in the center of the pans. Eventually, even the “doughnut hole” blended into the scorch ring because the walls were not bleeding sufficient heat away from the floor. This was especially pronounced in the Fissler, the high wall and rim areas of which never exceeded 125F. The aluminum pan, in contrast varied less than 30F everywhere on the pan.

      D. Other Considerations

      The Panasonic’s fan noise at the cook’s position was noticeable at 63 dBA, higher than with the VMP’s 57 dBA. These levels are characterized as “normal conversation” and “quiet street”, respectively. Interestingly, I found two other, potentially more important differences. First, the Panasonic’s fan stays on, even after the unit is powered off, whereas the VMP’s fan shuts off immediately when the hob is turned off. Second, the Panasonic’s fan steps down from the louder speed to a much quieter (47 dBA, characterized as “quiet home”) level until the Ceran is cool to sustained touch, at which point it shuts off completely. I think the Panasonic’s ability to continue to vent and cool itself is a great feature, especially since a cook could leave a large, full, hot pan on the glass.

      The glowing circle is useless for gauging heat setting or intensity. And while it works to indicate a hot surface, it remains lit long after you can hold your hand in place dead center.
       
      VI. Summary and Lessons
       
      The Panasonic KY-MK3500 is a solid unit, well-conceived and rugged. It is extremely easy to use. It works well with both the common 24kHz frequency used with ferromagnetic cookware, and the 90kHz frequency chosen here for copper and aluminum. It effectively and automatically switches between the two.

      In my opinion, it points the way to expanding the worldwide induction appliance market to include dual frequencies. It also obviates the need to: (a) junk otherwise excellent cookware merely to have induction; and (b) retrofit designs to bond on ferromagnetic outer layers. In fact, in my opinion, my tests indicate that, in a dual-frequency world, adding ferromagnetic bottoms may well be a drag on pans’ performance.
       
      I also consider the Panasonic Met-All to be ground-breaking in what it can tell us about *pans*, because all metallic pans are now commensurable on induction. Clearly (to me anyway), watt-for-watt, the copper and aluminum pans performed better than did the clad and disk-based pans on this unit. Boil times were faster, there was less propensity to scorch, and the conductive-sidewall pans definitely added more heat to the pans’ contents. We may ultimately find that 90kHz fields save energy compared to 24kHz fields, much as copper and aluminum require less heat on gas and electric coil.
      In terms of heat transfer, the copper and aluminum pans came close to emulating the same pans on gas. And at 2400W/3500W it has the power of a full size appliance in a relatively small tabletop package.
       
      The Panasonic is far from perfect, however. It can’t really be considered portable. There are far too few temperature settings, and what few it has are not accurate or consistent in terms of judging pan contents and attaining the same temperature in different pans (and even the same pan unless clean). The luminous ring could easily have been made a useful indicator of intensity, but wasn’t. And it lacks things that should be obvious, including a through-the-glass “button” contact thermocouple, more power granularity, an analog-style control knob, and capacity to accept an external thermocouple probe for PID control.
       
      Most importantly for me, the Panasonic KY-MK3500 portends more good things to come. Retail price remains $1,700-$2,400, but I jumped on it at $611, and I’ve seen it elsewhere for as low as $1,200.
       
      The manual can be found here: ftp://ftp.panasonic.com/commercialfoo...
       
      Photo Credit:  Panasonic Corporation

    • By artiesel
      THE BOOKS ARE SOLD
       
       
      I have Volumes 1 ,2 and 4 of Jean-Pierre Wybauw's Great Chocolate books are for sale.
       
      The books are in great shape!  There is some tape on the corner of the front of volume 1 that I used to keep it together after a drop.  Volume 1 is also autographed by the author (See pics below).
       
      I'm asking $150 for the lot OBO.
       
      Let me know if interested or if you have questions
       
       
       



    • By umami5
      Has anyone come across a digital version of Practical Professional Cookery (revised 3rd edition) H.L. Cracknell & R.J. Kaufmann.
      I am using this as the textbook for my culinary arts students and a digital version would come in very handy for creating notes and handouts.
  • Recently Browsing   0 members

    No registered users viewing this page.

×