Jump to content
  • Welcome to the eG Forums, a service of the eGullet Society for Culinary Arts & Letters. The Society is a 501(c)3 not-for-profit organization dedicated to the advancement of the culinary arts. These advertising-free forums are provided free of charge through donations from Society members. Anyone may read the forums, but to post you must create a free account.

Renn

"Modernist Cuisine" by Myhrvold, Young & Bilet (Part 1)

Recommended Posts

I don't want to speak as if I know the man, or to suggest that I defend him for any other reason than to dispel an obvious mistruth. But Nathan founded Microsoft Reserch, ran it for several years, studied cosmology under Stephen Hawking, holds patents in several fields, and etc. To say he has a background in science is like saying Joe Montana played a couple of games of football. But I choose to digress at this point. My feelings on the subject have been aired.


Edited by nextguy (log)

Share this post


Link to post
Share on other sites

... there is no justification (obviously this is MY opinion, which many fail to realize) to this over-inflated price tag.

I don't think anyone fails to realize that. What else could it be?

The problem is you are saying it without reviewing the book *or* its authors (you do realize it isn't just one guy, right?). When you obtain the book (library's are good places, as are friends) and see what is actually in it, then your opinion counts. Until then you opinion has no basis whatsoever. You can't even claim it is based on previous books like this (as weak as that would be) since there aren't really any predecessors.

So before you assert that it is overpriced, it would be nice for you to actually have some information to go on beyond the price. It might very well be overpriced (but at least I'll actually have first hand knowledge when the time comes....)

Share this post


Link to post
Share on other sites

It's a legitimate criticism: the team involved has no established reputation as experimentalists. I'm interested in the data and techniques in the book, not the recipes, so I couldn't care less about their reputation as chefs (and we certainly have seen many truly awful books from well-regarded chefs, so I'm not convinced it would matter anyway). It's a testament to Nathan's clearly demonstrated intelligence and drive that so many of us are willing to bet such a substantial sum of money on this book. Yes, he has a background in science, but experiments are HARD. REALLY HARD. I don't think most people appreciate how difficult it is to set up an experiment properly. I'm betting Nathan does.

(As an aside, there is value in even just collecting all of this disparate data into a single compendium, even if we were to accept the dubious notion that it's all already available elsewhere)

I realize you have to be a bit nice here Chris, but I will have to disagree. Stick's comments are not a legitimate criticism. They are "bashing", that's all. He (or could be she I guess) essentially is calling everyone who chooses to buy the book a moron and likens that to buying a ficticious bridge in FL. He calls such purchases "frivolous". He also says that the price of the book is "inflated" even though he has no clue, NO CLUE at all about the actual cost and expense that went into creating it (none of us really do). He also ascertains that the contents are all available online which is bullshit to say the least. Then he hides behind the 'well it is my opinion' catch-all phrase.

I have seen people critisize books like Fat Duck and French Laundry for being "coffee table" books after buying them and while I completely disagree, I understand their critcism and they are in a sense "correct". It is one thing to say "It's not worth it for me to spend $600 on a bunch of books" and a total different thing to attempt to bash a scientific piece of work without actually assessing the contents. Hell, things could change between now and March and I might decide that I need to spend my $$ on something else at this time, but I would not go around calling people idiots for choosing to buy it. It's the same syndrome that afflicts those people who think I am nuts for spending $200 per person once or twice a year on a nice fine dining meal since for that much cash I can eat for a month at McD. This really will get you no respect or agreement.


E. Nassar
Houston, TX

My Blog
contact: enassar(AT)gmail(DOT)com

Share this post


Link to post
Share on other sites

... experiments are HARD. REALLY HARD. I don't think most people appreciate how difficult it is to set up an experiment properly.

Chris, I think you would be surprised to find out how many contributors to both this thread and the sous vide thread have completed experimental research-based PhDs. The type of cooking attracts us. As a corollary we also have very strong search and research skills on the Internet. When we suggest that much of what is being produced in the book, as indicated by the index and the snippets we have seen from Nathan, is not available on the Internet, our opinions tend to be fact- rather than emotion- based.


Nick Reynolds, aka "nickrey"

"The Internet is full of false information." Plato
My eG Foodblog

Share this post


Link to post
Share on other sites

Purchasing 1 book, for say $500, or 5 equally well thought out, potentially more highly acclaimed authored books, of equal or higher caliber.....hmmmmmmm........

You know that Modernist Cuisine isn't just one book, right? I assume that's why you edited the word "single" out of your post above. It is 5 books.

Share this post


Link to post
Share on other sites

... experiments are HARD. REALLY HARD. I don't think most people appreciate how difficult it is to set up an experiment properly.

Chris, I think you would be surprised to find out how many contributors to both this thread and the sous vide thread have completed experimental research-based PhDs.

I would not be surprised at all... but I hardly lump the SV-topic-contributors in with "most people" :wink:. My point is simply that sadistick is quite within his or her rights to question the backgrounds of the authors of the book: they are not "world-renowned experimentalists." And being a good scientist does not necessarily result in being a good experimentalist (I have read an awful lot of poor experimental results from otherwise-capable researchers). Sadistick seems unwilling to trust that Nathan and his team are competent experimentalists: I say, the proof of the pudding is in the eating; as Nathan and company have already demonstrated several of their new results, I personally am quite convinced they know what they are doing! Therefore, the question of price tag is not, for me, a question of whether I trust the correctness of the results, but simply, whether a collection of those results is worth $500. At $100 per volume it's not even close to the most expensive textbook most scientists own, so it doesn't seem unreasonable in the least.


Chris Hennes
Director of Operations
chennes@egullet.org

Share this post


Link to post
Share on other sites

I don't want to speak as if I know the man, or to suggest that I defend him for any other reason than to dispel an obvious mistruth. But Nathan founded Microsoft Reserch, ran it for several years, studied cosmology under Stephen Hawking, holds patents in several fields, and etc. To say he has a background in science is like saying Joe Montana played a couple of games of football. But I choose to digress at this point. My feelings on the subject have been aired.

A bit OT and not talking specifically about the authors but being an accomplished scientists in one field doesn't mean anybody is an accomplished (or even reasonable) scientist in any other field of science.

And even more OT, you are aware of how patents and the USPTO/WIPO work and that having a patent doesn't mean anything about the quality of the science behind it. The USPTO has nothing to do with peer-review but just evaluating novelty, non-obviousness etc.

Share this post


Link to post
Share on other sites

Thanks for the spirited defense that some of you have mounted on my behalf. For some reason the eGullet notification service stopped sending me email, and I have been so busy on the book that I didn't notice until now.

The team has worked hard to earn the trust (at least most of you) have placed in us. I think that you'll pleased when you see the final product.

Here are a few statistics that may help. We have more than 1500 recipes in the book. Many of these we developed, but we also had contributions from 72 chefs around the world, including Ferran Adria, Heston Blumenthal, Grant Achatz, Wylie Dusfrense and David Chang. We also have some recipes based on original creations by people like Thomas Keller, Daniel Boulud, Eric Ripert and many others.


Nathan

Share this post


Link to post
Share on other sites

The book and the team will be featured in a segment on the Martha Stewart show on November 3. It airs on the Hallmark channel in the US. This link announces it.


Nathan

Share this post


Link to post
Share on other sites

Over $600 for a (cook)book!?

What is this world coming to......

Anyone willing to shell out this much money for information (readily available online) printed with some (most likely beautiful) pictures on paper and bound, I have a bridge in FL that I will sell ya....

Why drive a nice car when a crappy one will get you from A to B? There are a million value judgments people make every day. Aside from the price not being $600, I can see from reading the whole thread (did you?) that there's HUGE amounts of original research going into these books (plural). Not exactly mass market material, so I doubt I will see it in my local B&N though, next to the latest Sandra Lee masterpiece, but I will wager that many Michelin starred chefs amongst others will be buying it.
How much was that bridge in FL for and where does it go? It might be worth it to some.

Bear in mind, if he sold the bridge, he'd have to move from under it.

Share this post


Link to post
Share on other sites

Book looks amazing...if I ever win the lottery, I promise to buy it :)

In all seriousness, I'm not having a dig. It looks worth the money, but I'm not sure it's money I have right now!

On a related note, I'm not sure why sadistick is so surprised that people on eGullet are willing to spend a large amount of money on this book. I'm pretty sure I spotted a thread on eGullet about using Ipads in the kitchen! The point is, eGullet is a forum where many of the users have a significant disposable income. And these people chose to spend this disposable income on food/cooking-related products. That's their priority, it's really not surprising! I spend most of my disposable income on travel to India (including research on food and cooking...see there's still the same core reason!), that's my priority. I say, let people spend their money where they will!

By the way, when people get the book, can they post loving close-ups of the covers, and shots of dishes they have cooked from the book? I want to live vicariously through you!

Share this post


Link to post
Share on other sites

Thank you NathanM.

I have a laboratory vacuum pump which I have been using in my shop for many things. It never occured to me to use it in the kitchen to reduce food.

Reducing food, sauce, stock by cooking changes the taste, but using vacuum does not. This is worth $1,000 to me that I can make sauces, juices, better than anyone else can.

dcarch

Share this post


Link to post
Share on other sites

By the way, when people get the book, can they post loving close-ups of the covers, and shots of dishes they have cooked from the book? I want to live vicariously through you!

This is precisely what I wish to see and do.

Share this post


Link to post
Share on other sites

Pre-ordered my copy today from amazon.ca 402 CAD, 420 with taxes, quite a good deal!

Share this post


Link to post
Share on other sites

I've lusted after this book (books) ever since I first heard of it. Just now, when I saw the price at amazon.ca, I bought. It seems a reasonable price, even if not cheap. I would say to sadistick that not every worthwhile thing will be cheap.

Share this post


Link to post
Share on other sites

My christmas request for sure, at least to match the pre-order price. I am going to geek out so hard come March!


Sleep, bike, cook, feed, repeat...

Chef Facebook HQ Menlo Park, CA

My eGullet Foodblog

Share this post


Link to post
Share on other sites

I just have to have this, simple as that. I might never ever cook from it, I might just page through and look at the stunning photos, read a bit here and there, but this is going to be a spectacular mini library of food porn awesomeness with a ton of hard to otherwise collect information and the above mentioned incredible photos. I'll have to get rid of some other books to even make room for this, but there are some candidates catching dust on my shelf, so that should not be too much of a problem.

I'm actually glad it got delayed until 2011, more time to save up for it :biggrin:


"And don't forget music - music in the kitchen is an essential ingredient!"

- Thomas Keller

Diablo Kitchen, my food blog

Share this post


Link to post
Share on other sites

This morning I had the opportunity to spend some time with Nathan M. for a preview of the book(s). He had pages of the book, videos and a PowerPoint presentation loaded up on his laptop. By the way he has shaved his beard:

P1010198.JPG

Modernist Cuisine is a staggeringly impressive accomplishment. It is not hyperbole to say that it is the most significant culinary book project of our generation. It is far more comprehensive than I'd have imagined, with chapters or sections on food safety, nutrition, regional barbecue styles, food history, wine, coffee, thickeners, the truth about the invention of molten-center chocolate cake... it covers just about every conceivable aspect of culinary modernism save for a full treatment of pastry, which has been left for a potential future project.

Not only is the material comprehensive but also it is beautiful. The photography is, as I imagined it would be, absolutely first rate. But the camera is only the beginning. To illustrate several key points of technique and process, they cut pots, food and machines in half in order to photograph their cross sections. They've done many charts, graphs, maps, timelines and other illustrations, all at the highest standards.

Here's one example of the photo work Nathan M. and his team have done. This the ultimate cheeseburger:

nathanmhamburger.jpg

I definitely recommend that you explore the Modernist Cuisine website. It contains quite a lot of information about the book. In particular, the "About the Book" downloadable .pdf is definitely worth grabbing. I believe it is the first few pages of the book, consisting of Nathan M. telling the story of the book and addressing several of the most common comments about it.

[Edited to add: the first photo was taken by me, the second was posted with permission of Nathan M.]


Steven A. Shaw aka "Fat Guy"
Co-founder, Society for Culinary Arts & Letters, sshaw@egstaff.org
Proud signatory to the eG Ethics code
Director, New Media Studies, International Culinary Center (take my food-blogging course)

Share this post


Link to post
Share on other sites

Do you know, Steven, if Nathan will be doing a book tour?


Edited by docsconz (log)

John Sconzo, M.D. aka "docsconz"

"Remember that a very good sardine is always preferable to a not that good lobster."

- Ferran Adria on eGullet 12/16/2004.

Docsconz - Musings on Food and Life

Slow Food Saratoga Region - Co-Founder

Twitter - @docsconz

Share this post


Link to post
Share on other sites

I know from the book's PR person that there are some events and appearances planned for March, but I don't know that it's a book tour as such.


Steven A. Shaw aka "Fat Guy"
Co-founder, Society for Culinary Arts & Letters, sshaw@egstaff.org
Proud signatory to the eG Ethics code
Director, New Media Studies, International Culinary Center (take my food-blogging course)

Share this post


Link to post
Share on other sites
Guest
This topic is now closed to further replies.

  • Similar Content

    • By kostbill
      Hello.
      I would like to buy some pectinex ultra sp-l.
      However I am worried about the temperature during the shipping time.
      I read that the storage temperature should be between 2 and 8 C. It works best from 15 to 50 C, and if it stays a lot of time in 25 C, it will gradually be deactivated.
       
      It needs a week to come here (Greece), then will it affect its abilities?
       
      Do you know if I can find a document somewhere that explains the gradual loss of power as a function of time and temperature?
      Did you have any experience with pectinex not working well due to bad storage?
       
      Thanks.
    • By Galchic
      Hello, folks, thanks for reading.
       
      My husband thinks, I should start selling my popcorn seasonings (which I make for my family), it’s a good product. But I'm not sure if it’s interesting to other people... So, what do you think, guys?
       
      Our story: 
      We’ve bought an air popper machine, but popcorn came out pretty tasteless. Then, we’ve bought different “popcorn seasoning” mixes... But it always ends with all the seasoning at the bottom of the bowl. Then, we've added butter, oil and so on before seasoning...  we got soggy, chewy popcorn. Lot’s of disappointments…
       
      When we almost gave up… the magic happened! I figured out the way to make seasonings that:
      Stick to popcorn, but not sticky to fingers (or T-shirt  , Easy to apply, May be pre cooked in bulk and stored… And popcorn appears crunchy, tasty, thoroughly covered with seasoning.  
      Sounds good, yep? Now, when I want to treat myself  - I only need 2 mins to turn tasteless popped popcorn to a real treat.  
      The only moment - it request 1 extra effort: after you toss it over popcorn, you need to microwave it for 1 min, and stir after.
       
      So, I was wondering, if you like popcorn like myself - would this seasoning be interesting for you to purchase? Are you ready for a little extra work (microwave & stir) in the goal to flavor popcorn, or it feels too much effort?
       
      As I have no experience in manufacturing and retail, your answers would help me to make a very important decision - to dive in or not... 
       
      Thanks in advance for your answers, it means the world to me.
       
    • By boilsover
      It's bad enough correcting common zombie cookware misconceptions.  But when a legitimate food expert like Mark Bittman spouts complete nonsense about all tinned cookware containing lead, it's downright dismaying.  Likewise when salespeople and companies tell that eternal doozer:  "Cast iron heats evenly."
       
      The winner for 2019--so far--however, has to be Florence Fabricant, New York Times columnist and author of 12 cookbooks.  In her January 22, 2019 issue of her column "Front Burner", Ms. Fabricant gushes over the carbon steel skillet made by Made In.  Among other reasons to recommend it:
       
      "It’s a good conductor (it can be used on an induction cooktop) and has heft..."
       
      What?  Surely Fabricant knows carbon steel, like any steel, is not only *not* a good conductor, it's a *terrible* one.   In fact it's the worst metal pans are made of.  If she doesn't, she needs to take a remedial physics course.
       
      And perhaps she was under a deadline to push this out, but what gives with the non sequitur explanatory parenthetical?  Does she really believe that good conductivity and induction compatibility are the same or even closely related?
       
      Doubtless, someone, somewhere has already taken this nonsense for Gospel and spread it around.  "Oh, boy!  I can't wait for my new conductive steel skillet to be delivered!" 
      Do you see, Larry?  Do you see what happens when you make stuff up?
       
      https://www.nytimes.com/2019/01/22/dining/made-in-carbon-steel-skillet.html
       
    • By Cookwhoplaysdrums
      Can anyone suggest me some good books related to Gastronomy, food history, culture, recipes based on different cultures. 
      Also recommend the best food magazine subscriptions. 
    • By boilsover
      I. Introduction
       
      This article reviews the 3500W all-metal commercial induction single-hob hotplate by Panasonic, which I believe is the first “all-metal” unit to hit the U.S. market. Where appropriate, it is also compared with another commercial single-hob, the 1800W Vollrath Mirage Pro Model 59500P.
       
      Some background is in order. Heretofore, induction appliances would only “work” with cookware which is ferromagnetic. Bare and enameled cast iron, carbon steel, enameled steel and some stainless steels were semi-dependable for choices, and the cookware industry has worked hard to make most of its lines induction compatible. But alas, not all cookware, past and present, has worked; copper and aluminum don’t, at least without a separate interface disk or it’s own ferromagnetic base layer.
       
      The reason why non-ferromagnetic cookware hasn’t worked on induction is technical, but it relates to the magnetic field and what’s called the “skin depth” of the pan’s outermost material. With copper or aluminum, the field will not excite the metals’ molecules to the extent that their friction will generate useful heat to cook food. And the way the appliances come equipped, unless the appliance detects something sufficiently large and ferromagnetic, they will not produce any field at all. Therefore, to the consternation of many cooks, pro and amateur, older (and in the opinion of some, better) cookware needs to be retired and replaced if/when they wish to switch to an induction appliance. Some cooks don’t mind, but others who, like me, have invested heavily in copper and are habituated to it and aluminum, would forego induction altogether rather than discard our cookware.
       
      But what we’ve really meant—all along--when we say or write that only ferromagnetic cookware will “work” on induction is that the frequency chosen for our appliances (20-24kHz) will not usefully excite other metals. If that frequency is increased to, say, 90-110kHz , then suddenly the impossible happens: aluminum and copper, with absolutely no ferromagnetic content, will heat in a way that is eminently useful in the kitchen.
      While Panasonic has made dual-frequency induction hotplates available in Japan for several years now, they didn’t make it available here until recently (My unit indicates it was manufactured in early 2016!). I speculate the reason for the delay relates to the detection circuitry and the switches that determine the frequency at which the field will operate.

      The introduction of all-metal induction in USA is especially interesting because it allows a direct comparison of cookware of all (metal) types. For instance, cookware nerds have long debated how copper cookware on a gas compares with disk-based stainless on induction. While the veil has not completely lifted (for that we would need extremely precise gas energy metering), we now have the ability to measure and compare copper, aluminum, clad and disk-based on the same induction hob.
       
      II. Dimensions, Weight & Clearances
       
      The Panasonic, being a true commercial appliance, is considerably larger than most consumer and crossover hotplates. It stands 6 inches tall overall, and on relatively tall (1.25”) feet, so that there is space for ample air circulation under the unit. It is 20.25 inches deep overall, including a standoff ventilation panel in back, and the angled control panel in front. It is 15” wide, and weighs in at a hefty 30.25 pounds. Suffice it to say, the Panasonic is not practically portable.

      The KY-MK3500’s Ceran pan surface is 14.25 inches wide by 14.5 inches deep, almost 43% larger in area than the VMP’s glass. Panasonic tells me they have no recommended maximum pan diameter or weight, but the tape tells me that a 15” diameter pan would not overhang the unit’s top (Compare the VMP, which can accept a maximum pan base of 10 7/8”). Common sense tells me that—unless the glass is well-braced underneath in many places, 25-30 pounds of total weight might be pushing it.
       
      For those who might consider outfitting their home kitchens with one or more of these units, in addition to having 20 amp 240v (NEMA #6-20R receptacles) electrical circuits for each appliance, 39 1/2 inches of overhead clearance is required to combustible material (31 ½” to incombustibles) and 2 inches to the back and sides (0” to incombustibles). The overhead clearance requirement and the tall 6” unit height call for no (or only very high) cabinetry and careful design of a “well” or lower countertop/table that will lower the Ceran surface to a comfortable cooking height. In other words, a tall pot on this unit on a regular-height counter might be a problem for a lot of cooks.
      III. Features

      A. Display
       
      The KY-Mk3500 has an angled 8-key spillproof keypad and red LED numerical display. The keys are large, raised and their markings are legible. All but the four Up/Down keys have their own inset indicator lights, which indicate power, mode and memory operation.
       
      The numerical display is large and bright. The numerical display area is divided between time (XX:XX) to the user’s left and power/temp to the user’s right. If the timer or program features are activated, the numerical display shows both the set time and the power/temperature. There is also a small “Hot Surface” LED icon on the panel.
      The Panasonic also actually uses the Ceran surface as a display of sorts. That is, there is a lighted circle just outside the faint positioning circle, which glows red whenever the unit is operating, awaiting a pan, or the Ceran is hot. Panasonic also claims that this display also changes brightness with the set power level, implying that the operator can judge the heat setting by a glance. Thus this display serves three purposes: (a) pan positioning; (b) burn safety; and (c) intensity.

      B. Safety Features
       
      As one would expect, there are a variety of safety features built into this appliance. In most cases, these features are controlled by detection circuits, some fixed, some defeatable/variable. This being a commercial unit, Panasonic has set the unit’s defaults with commercial users’ convenience in mind. If consumers want the full spectrum of safety settings, they need to vary these defaults. For instance, if a home cook wants to make sure the unit powers off if the pan is removed and not replaced within 3 minutes, they have to manually vary a default. Likewise if the operator wants the power to automatically shut off after 2 hours of no changes. But others, like the basic “Is there a pan there?” detection and overheat shutoff, are there no matter what and cannot be defeated.
      C. Settings & Programming

      The KY-MK3500 features both power and temperature settings. For “regular” induction, there are 20 power settings, which range from 50 watts to 3500 watts. For non-ferromagnetic pans, there are 18 power settings, which range from 60 watts to 2400 watts. The display shows these settings in numerals 1-20 and 1-18 respectively. When the power is toggled on, the unit defaults to Setting 14 in both frequencies.

      The temperature settings are the same in both modes, with 22 selectable temperatures from 285F (140C) to 500F (260C). Other than for the very lowest temperature setting, each setting increase results in a 10F temperature increase. Usefully, the display shows the set temperature, not 1-22; and until the set temperature is reached, the display indicates “Preheat”. The unit beeps when it reaches the set temperature. The Panasonic measures pan temperature using an IR sensor beneath the glass; this sensor sits about 1 inch outside the centerpoint of the painted positioning markings, yet inside of the induction coil.

      The timer operation is fast and intuitive. Once the power or temperature is set and operating, the operator merely keys the timer’s dedicated up/down buttons, and the timer display area activates. Timer settings are in any 30-second interval between 30 seconds and 9 ½ hours, and the display will show remaining time. The beeps at the end of cooking are loud.
       
      There are nine available memory programs, which can be set for either power or temperature, along with time. Programming entails pressing and holding the Program mode button, selecting the program (1-9), then picking and setting the power or temperature, then setting the timer, and finally pressing and holding the Program button again. After that, to use any of the entered programs, you simply press the Program button, select which program, and the unit will run that program within 3 seconds.
       
      In addition to Heat-Time programmability, the KY-MK3500 also provides the ability to vary 9 of the unit’s default settings: (1) Decreasing the power level granularity from 20 to 10; (2) Changing the temperature display to Celsius; (3) Enabling a long cook time shutoff safety feature; (4) Enabling the main power auto shutoff feature; (5) Disabling the glowing circle; (6) Lowering or disabling the auditory beep signals’ volume; (7) Customizing the timer finish beep; (8) Customizing the Preheat notification beep; and (9) Customizing the interval for filter cleanings.
       
      D. Maintenance
       
      The KY-MK3500 has a plastic air intake filter which can be removed and cleaned. This is not dishwashable. This filter is merely a plastic grate with ¼” square holes, so it is questionable what exactly —besides greasy dust bunnies—will be filtered. Panasonic recommends the filter be cleaned once a week. Besides that, the Ceran surface and stainless housing clean just like other appliances.
       
      IV. Acceptable Cookware
       
      Panasonic claims the unit will accept cast iron, enameled iron, stainless steel, copper, and aluminum with two provisos. First, very thin aluminum and copper may “move” on the appliance. And second, thin aluminum pans may “deform”. Panasonic does not address carbon steel pans, but I verified that they do indeed work. They also warn of the obvious fact that glass and ceramics will not work.
       
      Buyers are also warned against using cookware of specific cookware bottom shapes: round, footed, thin, and domed. Trying to use these, Panasonic warns, may disable safety features and reduce or eliminate pan heating.
       
      As far as minimum pan diameter goes, Panasonic claims the KY-MK3500 needs 5” diameter in ferromagnetic pans, and 6” in copper or aluminum ones. My own tests have shown that in fact the unit will function with a cast iron fondue pot, the base of which is only 4 1/8” in diameter, and also works with a copper saucepan, the base of which is almost exactly 5” in diameter. Obviously, the field will be most active at the very edges of such small pans, but they do function.
       
      V. Evaluation in Use

      I can say that not only does the Panasonic KY-MK3500 “work” with copper and aluminum pans, but that it works very well with them. Thermally, thick gauge conductive material pans perform in close emulation of the same pans on gas, even though there are no combustion gasses flowing up and around the pan. I found this startling.
       
      Nevertheless, a searching comparison between copper and ferromagnetic pans on this unit isn’t as straightforward as one might expect. The Panasonic is capable of dumping a full 3500 watts into ferromagnetic pans, but is limited to 2400 watts for aluminum and copper. Despite copper’s and aluminum’s superiorities in conductivity, that extra 1100 watts is going to win every speed-boil race.
       
      I initially thought I could handicap such a race simply by using the temperature setting and comparing the times required to achieve a “preheat” in a pans of cold water. Alas, no—the Panasonic’s IR function signified the copper pan was preheated to 350F before the water even reached 70F! Obviously, the entire thermal system of cold food in a cold pan needs to come to equilibrium before the Panasonic’s temperature readout becomes meaningful.

      A. Temperature Settings
       
      Unfortunately, with every pan I tried, the temperature settings were wildly inaccurate for measuring the temperature of the food. I heated 2 liters of peanut oil in a variety of pots, disk-base, enameled cast iron enameled steel, and copper. I thought it might be useful to see how close to 350F and 375F the settings were for deep frying. The oil in a Le Creuset 5.5Q Dutch oven set to 350F never made it past 285F, and it took 40:00 to get there. I kept bumping up the setting until I found that the setting for 420F will hold the oil at 346F. A disk-based pot didn’t hit 365F until the temperature setting was boosted to 400F. The only pan which came remotely close to being true to the settings was a 2mm silvered copper oven, which heated its oil to 327F when the Panasonic was set for 350F, and 380F when set for 410F.
       
      The temperature function was a lot closer to true when simply preheating an empty pan. With a setting of 350F, all the shiny stainless pans heated to just a few degrees higher (about 353-357F) and held there. This is useful for judging the Leidenfrost Point (which is the heat at which you can oil your SS and have it cook relatively nonstick) and potentially for “seasoning” carbon steel, SS and aluminum, but not much else, since it doesn’t translate to actual food temperature. There’s also the issue of the temperature settings *starting* at 285F, so holding a lower temperature for, e.g., tempering chocolate or a sous vide bath, or even a simmer would be by-guess-by-golly just like any other hob—your only resort is lots of experience with lower *power* settings.
       
      With heat-tarnished copper, a 350F setting resulted in a wide swinging between 353F and 365F, which I attribute to the copper shedding heat far faster than the other constructions, once the circuit stops the power at temperature. Then, when the circuit cycles the power back on, the copper is so responsive that it quickly overshoots the setting. Aluminum, on the other hand, *undershot*, the 350F setting, registering a cycle of 332-340F.

      I conclude that the IR sensor is set for some particular emissivity, probably for that of stainless steel. If true, the Panasonic, even though it automatically switches frequencies, does not compensate for the different emissivities of copper and aluminum. And even if Panasonic added dedicated aluminum and copper IR sensors, there is enough difference between dirty and polished that the added cost would be wasted. Bottom line here: the temperature setting mode is of extremely low utility, and should not be trusted.
       
      B. Power Mode – Pan Material Comparisons
       
      Given the differences in power setting granularity and maximum power between the two frequencies, it is difficult to assess what X watts into the pot means in, say, a copper-versus-clad or –disk showdown. What is clear, however, is that Setting X under disk and clad seems “hotter” than the same setting under copper and aluminum.

      I will need to precisely calibrate the Panasonic for wattage anyway for the hyperconductivity project, so I will obtain a higher-powered watt meter to determine the wattage of every power setting for both frequencies. Until then, however, the only way I can fairly handicap a race is to apply a reduction figure to the ferromagnetic setting (2400W being 69% of 3500W). Given that we know the wattage at the maximum settings, we can infer that Setting 14 (actually 13.8) on the 20-step ferromagnetic range iis approximately the same heat output as the maximum setting (18) for copper/aluminum.

      The boil times for 4 liters of 50F water in 10” diameter pots shocked me. The 10” x 3mm tinned copper pot’s water reached 211F in 36:41. Not an especially fast time at 2400 watts. The 10” disk-based pressure cooker bottom? Well, it didn’t make it—it took an hour to get to 208F and then hung there. So that left me wondering if the Panasonic engineers simply decided that 2400 watts was enough for copper and aluminum. I have a theory why the copper pot boiled and the SS one didn’t under the same power, but getting into that’s for another time.

      C. Evenness Comparisons
       
      The wires which generate the induction field are wound in a circular pattern; when energized, they create a torus-shaped magnetic field. The wound coil is constructed with an empty hole at its center. As matters of physics, the magnetic field’s intensity drops off extremely fast as a function of the distance from the coil; a few millimeters above the Ceran, the field is so weak no meaningful heat will be generated. This means that most induction cooktops heat *only* the very bottom of pans, and in a distinct 2-dimensional “doughnut” shape.

      All of the above can result in a pan having a cooler central spot, a hotter ring directly over the coil, and a cooler periphery outside the coil. It is left to the cookware to try to even out these thermal discontinuities when cooking. Some materials and pan constructions are better at this than others: the successful constructions utilize more highly-conductive metals such as aluminum and copper, but unless the material is very thick, there can be a ring-shaped hotspot that can scorch food.
      Until the Panasonic arrived to market, hotspot comparisons between ferromagnetic and aluminum/copper pans depended largely on comparing induction’s flat, more discrete heat ring with gas’s more diffuse, 3-dimensional one. Dodgeball-style debate ensued, with few clear conclusions. But now, for the first time, equally-powered flat heat rings in two different frequencies allow us to directly compare evenness in ferromagnetic and aluminum/copper cookware.

      The simplest and easiest way to assess cookware evenness is the “scorchprint”, which does not require infrared or other advanced thermal imaging equipment. I’ve posted on how to conduct scorchprinting elsewhere, but basically a pan is evenly dusted with flour; heat is applied to the pan bottom. As the flour is toasted, any hotspots visually emerge, giving the viewer a useful general idea of evenness.
       
      I will later post the photos of scorchprints I made of 4 different pans run using the Panasonic KY-MK3500: (1) a Demeyere 28cm Proline 5* clad frypan; (2) a Fissler Original Profi disk-base 28cm frypan; a 6mm aluminum omelet pan; and (4) a 32cm x 3.2mm Dehillerin sauté. To make it a fair race, I heated all the pans at 2400W until they reached 450F, and then backed off the power setting to maintain 450F. I did this in order not to compromise my saute’s tin lining. As you will see, both the clad Demeyere and the disk-based Fissler did print the typical brown doughnut, with a cooler center and periphery. By far the most even was the thick, all-aluminum pan, which actually was even over its entirety—even including the walls. The copper sauté was also quite even, although its larger size and mass really dissipated heat; once 450F was dialed in, no more browning happened, even after 30 minutes.
       
      I conclude that the straightgauge pans were far more effective at shunting heat to their peripheries and walls (and also to some extent into the air) than the clad and disk-based pans. The latter accumulated their heat with most of it staying in the center of the pans. Eventually, even the “doughnut hole” blended into the scorch ring because the walls were not bleeding sufficient heat away from the floor. This was especially pronounced in the Fissler, the high wall and rim areas of which never exceeded 125F. The aluminum pan, in contrast varied less than 30F everywhere on the pan.

      D. Other Considerations

      The Panasonic’s fan noise at the cook’s position was noticeable at 63 dBA, higher than with the VMP’s 57 dBA. These levels are characterized as “normal conversation” and “quiet street”, respectively. Interestingly, I found two other, potentially more important differences. First, the Panasonic’s fan stays on, even after the unit is powered off, whereas the VMP’s fan shuts off immediately when the hob is turned off. Second, the Panasonic’s fan steps down from the louder speed to a much quieter (47 dBA, characterized as “quiet home”) level until the Ceran is cool to sustained touch, at which point it shuts off completely. I think the Panasonic’s ability to continue to vent and cool itself is a great feature, especially since a cook could leave a large, full, hot pan on the glass.

      The glowing circle is useless for gauging heat setting or intensity. And while it works to indicate a hot surface, it remains lit long after you can hold your hand in place dead center.
       
      VI. Summary and Lessons
       
      The Panasonic KY-MK3500 is a solid unit, well-conceived and rugged. It is extremely easy to use. It works well with both the common 24kHz frequency used with ferromagnetic cookware, and the 90kHz frequency chosen here for copper and aluminum. It effectively and automatically switches between the two.

      In my opinion, it points the way to expanding the worldwide induction appliance market to include dual frequencies. It also obviates the need to: (a) junk otherwise excellent cookware merely to have induction; and (b) retrofit designs to bond on ferromagnetic outer layers. In fact, in my opinion, my tests indicate that, in a dual-frequency world, adding ferromagnetic bottoms may well be a drag on pans’ performance.
       
      I also consider the Panasonic Met-All to be ground-breaking in what it can tell us about *pans*, because all metallic pans are now commensurable on induction. Clearly (to me anyway), watt-for-watt, the copper and aluminum pans performed better than did the clad and disk-based pans on this unit. Boil times were faster, there was less propensity to scorch, and the conductive-sidewall pans definitely added more heat to the pans’ contents. We may ultimately find that 90kHz fields save energy compared to 24kHz fields, much as copper and aluminum require less heat on gas and electric coil.
      In terms of heat transfer, the copper and aluminum pans came close to emulating the same pans on gas. And at 2400W/3500W it has the power of a full size appliance in a relatively small tabletop package.
       
      The Panasonic is far from perfect, however. It can’t really be considered portable. There are far too few temperature settings, and what few it has are not accurate or consistent in terms of judging pan contents and attaining the same temperature in different pans (and even the same pan unless clean). The luminous ring could easily have been made a useful indicator of intensity, but wasn’t. And it lacks things that should be obvious, including a through-the-glass “button” contact thermocouple, more power granularity, an analog-style control knob, and capacity to accept an external thermocouple probe for PID control.
       
      Most importantly for me, the Panasonic KY-MK3500 portends more good things to come. Retail price remains $1,700-$2,400, but I jumped on it at $611, and I’ve seen it elsewhere for as low as $1,200.
       
      The manual can be found here: ftp://ftp.panasonic.com/commercialfoo...
       
      Photo Credit:  Panasonic Corporation

  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...