Jump to content
  • Welcome to the eG Forums, a service of the eGullet Society for Culinary Arts & Letters. The Society is a 501(c)3 not-for-profit organization dedicated to the advancement of the culinary arts. These advertising-free forums are provided free of charge through donations from Society members. Anyone may read the forums, but to post you must create a free account.

Recommended Posts

I bought a BlueStar in October, and I'm loving it. Had a small problem w/coating flaking from one grate, and BS replaced it with no problems. Plenty BTUs, no superfluous electronics, easy to keep the cast iron top clean (IOW, it's not so shiny that every droplet shows, so you don't have to polish), and an oven big enough to fit a full sheet pan in a 30" stove. It was several thou cheaper than a Wolf or Dacor, but both are loaded with circuitry.

BlueStar's IR broiler is light years better than my old Amana gas oven's weak output.

I love the idea of minimal circuitry.

Does BS have enough electronics to tell you what the oven temp is?

Nope. BS has a little blue indicator light on front near the oven knob--it comes on when you turn the oven on, then the light goes out when the oven comes up to temp. No annoying beeps or displays to fail. LIke I said, no printed circuit boards anywhere in the damn thing. Just wires, LOL. I can fix wires my own self. The BS even includes a couple of spare igniters w/purchase. I got TWO 22k btu burners on front, 1 15k on back, and one 10k simmer. You can configure as you'd like. Local cost was around $4500 without delivery or installation. I will never need to buy another stove, ever.

I bought the all-gas model b/c I live where gas is cheap & the norm. You might like the electric oven version, depending on your regional gas prices.

  • Like 2

Share this post


Link to post
Share on other sites

well there is this:

http://www.amazon.com/BlueStar-Range-RNB-Inch-Natural/product-reviews/B002LF2ANM

who knows ?

Id say take your time, then a bit if not more.

I bought from a local dealer and picked it up myself from the distributor. After meeting them, I feel certain I'd get excellent service. And when I called BS directly about the slight flaking on the grate, the nice person on the phone gave me her email address and asked me to send a pic. I snapped a pic w/my phone, off the email went, and less than a week later, I had the brand-new part. No need to send the old one back or fax a copy of my receipt or go through the local dealer. I read beaucoup online reviews, and it does seem there were quality assurance issues a few years ago. Others who've posted negative reviews can't seem to distinguish between BS's customer service and the varying levels of competency evidenced by local repairmen. Anyway, I've had exactly the opposite experience---my unit has been fine aside from the cosmetic issue w/the grate.

Do know that the control knobs get warm to the touch when the oven is on. I have no small children in my household, so the heat buildup doesn't bother me.

RE:exhaust, there are plenty of high-end choices out there. I went with a relatively affordable 42" hood--the Broan Elite E64000 series--over my 30" stove. It produces 1200 CFM of "suck" and has commercial-style baffles and a removable grease rail. It is externally vented thru the roof. It was far far less expensive than comparable CFM hoods from BS or other "luxury" models that allowed for external appearance customization. Broan's brushed stainless exterior was fine for my kitchen. Here it is: http://www.broan.com/products/series/broan-elite-e64000-series-dbcefb50-4eaa-47e5-9170-848f8f190a9a

  • Like 2

Share this post


Link to post
Share on other sites

All of the above are great suggestions, and here is another one.

You don't need to replace your cabinets--just the doors!

It is the doors that take the most abuse and the most seen. If you are fortunate enough to have stock IKEA cabinets already in your home, you can swap out doors, I think IKEA has over 30 types of doors to choose from. You can re-use all the existing hardware or replace just the handles/knobs.

Even if you don't have IKEA cabinets, it is still cheaper to get new/custom made doors or drawer fronts and stick them on your existing cabinets than it is to replace everything. Also, replacing doors doesn't need a contractor or installer, just a bit of your time.....

  • Like 1

Share this post


Link to post
Share on other sites

Has anyone tried Lowe's? I was looking at their cabinets a few weeks ago. I forgot about IKEA, so this msg bd is a good reminder. Not quite ready to do a remodel on my small galley kitchen, still thinking it through.

Share this post


Link to post
Share on other sites

Don't forget to look into under cabinet lights. Lot's of LED lights to pick from. Lot's of bright light without heating up the food stuff you stored in the cabinets.

dcarch

  • Like 2

Share this post


Link to post
Share on other sites

I don't think remodeling a kitchen is cheap but you've gotten good ideas. I would recommend Pergo flooring if you have a solid warranty. My parents just remodeled their kitchen and didn't change their cabinets or fridge and still spent 50k.

Share this post


Link to post
Share on other sites

Just another happy BlueStar owner chiming in. [30" model] We've had ours long enough that it has the old [i.e. long since improved / superceded] oven door hinges. As noted, no-tech electronics, robust construction. Thermal expansion / contraction eventually loosened some blind-rivets, and we had an ignitor module go down once, but nothing which could not be fixed fairly easily. I don't broil much, but the thing is like the surface of the sun. Our convection oven [startlingly] seems to accurately reflect the set temperature on the dial, and is stable. Burner outputs can be custom-adjusted easily, and the simmer holds at a very low level, while the big ones [as in, we needed to run a bigger gas line into our little house 'big ones'] are a joy.

Running a five-foot Vulcan, you probably have all the extraction you need already, eh?

We run a Sakura 600cfm hood [wire filters, spin-off traps] comparable to the Broan unit mentioned above [don't know where the 1200cfm figure comes from, that's a 600cfm hood too] straight up through the roof and using the burners gives no smoke/smell issues. About half the price of the Broan hereabouts. OTOH, opening the oven door trips the smoke alarm fairly regularly, and the noise is not insignificant. Depending on pocket depth and tolerance for these things perhaps a higher end solution might be worth the money for you?

  • Like 2

Share this post


Link to post
Share on other sites

We run a Sakura 600cfm hood [wire filters, spin-off traps] comparable to the Broan unit mentioned above [don't know where the 1200cfm figure comes from, that's a 600cfm hood too] straight up through the roof and using the burners gives no smoke/smell issues. About half the price of the Broan hereabouts. OTOH, opening the oven door trips the smoke alarm fairly regularly, and the noise is not insignificant. Depending on pocket depth and tolerance for these things perhaps a higher end solution might be worth the money for you?

If I linked to a 600 CFM, I linked the wrong one. I have the 42" 1200 CFM Broan w/internal blower motor.

Share this post


Link to post
Share on other sites

Has anyone seen the new kitchen sprayer technology by Delta called ShieldSpray? Here's a link to their website (click)You don't lose the regular spray function or streaming function of a faucet...it's just a new function in addition to the others.

Here's a video showing it in use:

 

So it it a good thing? Or just a gimmick?  I like the lack of spray splatter (but, really, no one sprays a plate and make a mess like that unless they've never done dishes before ¬¬).

Share this post


Link to post
Share on other sites

I vote for gimmick. I want some spray force to dislodge stuff, this would seem to be less efficient.

  • Like 2

Share this post


Link to post
Share on other sites

Gimmick. We had one of these faucets installed during our recent remodeling (yes, I owe the membership the story of our travails), and had forgotten about this feature; luckily, it's not why we selected it. 

 

The problem is that in order to get that sexy balloon shape they show, you have to run the faucet at maximum pressure, and even then, only that center squirt does any appreciable work. At lesser pressure, the "balloon" doesn't form well, and it's almost as prone to splatter as the spray (and not as powerful; the center squirt is pretty wimpy). However, the spray function is excellent, and as Toliver says, only an amateur would make such a mess (ducks head in shame).

 

ShieldSpray might be good for cleaning deep-bowl wine glasses that have sat around all night and have dried deposits in the bottom, but we haven't fully tested that theory, because the remodeling also included a terrific dishwasher.

 

It's a great faucet, but don't buy it for this.

  • Like 2

Share this post


Link to post
Share on other sites

 These are my favorite wine glasses.  I seem to go through a lot of them because they're quite fragile.

I do wash them in the  d/w but that's now where they get broken.  They're more likely to get bumped or knocked off the counter;

Share this post


Link to post
Share on other sites

  • Similar Content

    • By boilsover
      I. Introduction
       
      This article reviews the 3500W all-metal commercial induction single-hob hotplate by Panasonic, which I believe is the first “all-metal” unit to hit the U.S. market. Where appropriate, it is also compared with another commercial single-hob, the 1800W Vollrath Mirage Pro Model 59500P.
       
      Some background is in order. Heretofore, induction appliances would only “work” with cookware which is ferromagnetic. Bare and enameled cast iron, carbon steel, enameled steel and some stainless steels were semi-dependable for choices, and the cookware industry has worked hard to make most of its lines induction compatible. But alas, not all cookware, past and present, has worked; copper and aluminum don’t, at least without a separate interface disk or it’s own ferromagnetic base layer.
       
      The reason why non-ferromagnetic cookware hasn’t worked on induction is technical, but it relates to the magnetic field and what’s called the “skin depth” of the pan’s outermost material. With copper or aluminum, the field will not excite the metals’ molecules to the extent that their friction will generate useful heat to cook food. And the way the appliances come equipped, unless the appliance detects something sufficiently large and ferromagnetic, they will not produce any field at all. Therefore, to the consternation of many cooks, pro and amateur, older (and in the opinion of some, better) cookware needs to be retired and replaced if/when they wish to switch to an induction appliance. Some cooks don’t mind, but others who, like me, have invested heavily in copper and are habituated to it and aluminum, would forego induction altogether rather than discard our cookware.
       
      But what we’ve really meant—all along--when we say or write that only ferromagnetic cookware will “work” on induction is that the frequency chosen for our appliances (20-24kHz) will not usefully excite other metals. If that frequency is increased to, say, 90-110kHz , then suddenly the impossible happens: aluminum and copper, with absolutely no ferromagnetic content, will heat in a way that is eminently useful in the kitchen.
      While Panasonic has made dual-frequency induction hotplates available in Japan for several years now, they didn’t make it available here until recently (My unit indicates it was manufactured in early 2016!). I speculate the reason for the delay relates to the detection circuitry and the switches that determine the frequency at which the field will operate.

      The introduction of all-metal induction in USA is especially interesting because it allows a direct comparison of cookware of all (metal) types. For instance, cookware nerds have long debated how copper cookware on a gas compares with disk-based stainless on induction. While the veil has not completely lifted (for that we would need extremely precise gas energy metering), we now have the ability to measure and compare copper, aluminum, clad and disk-based on the same induction hob.
       
      II. Dimensions, Weight & Clearances
       
      The Panasonic, being a true commercial appliance, is considerably larger than most consumer and crossover hotplates. It stands 6 inches tall overall, and on relatively tall (1.25”) feet, so that there is space for ample air circulation under the unit. It is 20.25 inches deep overall, including a standoff ventilation panel in back, and the angled control panel in front. It is 15” wide, and weighs in at a hefty 30.25 pounds. Suffice it to say, the Panasonic is not practically portable.

      The KY-MK3500’s Ceran pan surface is 14.25 inches wide by 14.5 inches deep, almost 43% larger in area than the VMP’s glass. Panasonic tells me they have no recommended maximum pan diameter or weight, but the tape tells me that a 15” diameter pan would not overhang the unit’s top (Compare the VMP, which can accept a maximum pan base of 10 7/8”). Common sense tells me that—unless the glass is well-braced underneath in many places, 25-30 pounds of total weight might be pushing it.
       
      For those who might consider outfitting their home kitchens with one or more of these units, in addition to having 20 amp 240v (NEMA #6-20R receptacles) electrical circuits for each appliance, 39 1/2 inches of overhead clearance is required to combustible material (31 ½” to incombustibles) and 2 inches to the back and sides (0” to incombustibles). The overhead clearance requirement and the tall 6” unit height call for no (or only very high) cabinetry and careful design of a “well” or lower countertop/table that will lower the Ceran surface to a comfortable cooking height. In other words, a tall pot on this unit on a regular-height counter might be a problem for a lot of cooks.
      III. Features

      A. Display
       
      The KY-Mk3500 has an angled 8-key spillproof keypad and red LED numerical display. The keys are large, raised and their markings are legible. All but the four Up/Down keys have their own inset indicator lights, which indicate power, mode and memory operation.
       
      The numerical display is large and bright. The numerical display area is divided between time (XX:XX) to the user’s left and power/temp to the user’s right. If the timer or program features are activated, the numerical display shows both the set time and the power/temperature. There is also a small “Hot Surface” LED icon on the panel.
      The Panasonic also actually uses the Ceran surface as a display of sorts. That is, there is a lighted circle just outside the faint positioning circle, which glows red whenever the unit is operating, awaiting a pan, or the Ceran is hot. Panasonic also claims that this display also changes brightness with the set power level, implying that the operator can judge the heat setting by a glance. Thus this display serves three purposes: (a) pan positioning; (b) burn safety; and (c) intensity.

      B. Safety Features
       
      As one would expect, there are a variety of safety features built into this appliance. In most cases, these features are controlled by detection circuits, some fixed, some defeatable/variable. This being a commercial unit, Panasonic has set the unit’s defaults with commercial users’ convenience in mind. If consumers want the full spectrum of safety settings, they need to vary these defaults. For instance, if a home cook wants to make sure the unit powers off if the pan is removed and not replaced within 3 minutes, they have to manually vary a default. Likewise if the operator wants the power to automatically shut off after 2 hours of no changes. But others, like the basic “Is there a pan there?” detection and overheat shutoff, are there no matter what and cannot be defeated.
      C. Settings & Programming

      The KY-MK3500 features both power and temperature settings. For “regular” induction, there are 20 power settings, which range from 50 watts to 3500 watts. For non-ferromagnetic pans, there are 18 power settings, which range from 60 watts to 2400 watts. The display shows these settings in numerals 1-20 and 1-18 respectively. When the power is toggled on, the unit defaults to Setting 14 in both frequencies.

      The temperature settings are the same in both modes, with 22 selectable temperatures from 285F (140C) to 500F (260C). Other than for the very lowest temperature setting, each setting increase results in a 10F temperature increase. Usefully, the display shows the set temperature, not 1-22; and until the set temperature is reached, the display indicates “Preheat”. The unit beeps when it reaches the set temperature. The Panasonic measures pan temperature using an IR sensor beneath the glass; this sensor sits about 1 inch outside the centerpoint of the painted positioning markings, yet inside of the induction coil.

      The timer operation is fast and intuitive. Once the power or temperature is set and operating, the operator merely keys the timer’s dedicated up/down buttons, and the timer display area activates. Timer settings are in any 30-second interval between 30 seconds and 9 ½ hours, and the display will show remaining time. The beeps at the end of cooking are loud.
       
      There are nine available memory programs, which can be set for either power or temperature, along with time. Programming entails pressing and holding the Program mode button, selecting the program (1-9), then picking and setting the power or temperature, then setting the timer, and finally pressing and holding the Program button again. After that, to use any of the entered programs, you simply press the Program button, select which program, and the unit will run that program within 3 seconds.
       
      In addition to Heat-Time programmability, the KY-MK3500 also provides the ability to vary 9 of the unit’s default settings: (1) Decreasing the power level granularity from 20 to 10; (2) Changing the temperature display to Celsius; (3) Enabling a long cook time shutoff safety feature; (4) Enabling the main power auto shutoff feature; (5) Disabling the glowing circle; (6) Lowering or disabling the auditory beep signals’ volume; (7) Customizing the timer finish beep; (8) Customizing the Preheat notification beep; and (9) Customizing the interval for filter cleanings.
       
      D. Maintenance
       
      The KY-MK3500 has a plastic air intake filter which can be removed and cleaned. This is not dishwashable. This filter is merely a plastic grate with ¼” square holes, so it is questionable what exactly —besides greasy dust bunnies—will be filtered. Panasonic recommends the filter be cleaned once a week. Besides that, the Ceran surface and stainless housing clean just like other appliances.
       
      IV. Acceptable Cookware
       
      Panasonic claims the unit will accept cast iron, enameled iron, stainless steel, copper, and aluminum with two provisos. First, very thin aluminum and copper may “move” on the appliance. And second, thin aluminum pans may “deform”. Panasonic does not address carbon steel pans, but I verified that they do indeed work. They also warn of the obvious fact that glass and ceramics will not work.
       
      Buyers are also warned against using cookware of specific cookware bottom shapes: round, footed, thin, and domed. Trying to use these, Panasonic warns, may disable safety features and reduce or eliminate pan heating.
       
      As far as minimum pan diameter goes, Panasonic claims the KY-MK3500 needs 5” diameter in ferromagnetic pans, and 6” in copper or aluminum ones. My own tests have shown that in fact the unit will function with a cast iron fondue pot, the base of which is only 4 1/8” in diameter, and also works with a copper saucepan, the base of which is almost exactly 5” in diameter. Obviously, the field will be most active at the very edges of such small pans, but they do function.
       
      V. Evaluation in Use

      I can say that not only does the Panasonic KY-MK3500 “work” with copper and aluminum pans, but that it works very well with them. Thermally, thick gauge conductive material pans perform in close emulation of the same pans on gas, even though there are no combustion gasses flowing up and around the pan. I found this startling.
       
      Nevertheless, a searching comparison between copper and ferromagnetic pans on this unit isn’t as straightforward as one might expect. The Panasonic is capable of dumping a full 3500 watts into ferromagnetic pans, but is limited to 2400 watts for aluminum and copper. Despite copper’s and aluminum’s superiorities in conductivity, that extra 1100 watts is going to win every speed-boil race.
       
      I initially thought I could handicap such a race simply by using the temperature setting and comparing the times required to achieve a “preheat” in a pans of cold water. Alas, no—the Panasonic’s IR function signified the copper pan was preheated to 350F before the water even reached 70F! Obviously, the entire thermal system of cold food in a cold pan needs to come to equilibrium before the Panasonic’s temperature readout becomes meaningful.

      A. Temperature Settings
       
      Unfortunately, with every pan I tried, the temperature settings were wildly inaccurate for measuring the temperature of the food. I heated 2 liters of peanut oil in a variety of pots, disk-base, enameled cast iron enameled steel, and copper. I thought it might be useful to see how close to 350F and 375F the settings were for deep frying. The oil in a Le Creuset 5.5Q Dutch oven set to 350F never made it past 285F, and it took 40:00 to get there. I kept bumping up the setting until I found that the setting for 420F will hold the oil at 346F. A disk-based pot didn’t hit 365F until the temperature setting was boosted to 400F. The only pan which came remotely close to being true to the settings was a 2mm silvered copper oven, which heated its oil to 327F when the Panasonic was set for 350F, and 380F when set for 410F.
       
      The temperature function was a lot closer to true when simply preheating an empty pan. With a setting of 350F, all the shiny stainless pans heated to just a few degrees higher (about 353-357F) and held there. This is useful for judging the Leidenfrost Point (which is the heat at which you can oil your SS and have it cook relatively nonstick) and potentially for “seasoning” carbon steel, SS and aluminum, but not much else, since it doesn’t translate to actual food temperature. There’s also the issue of the temperature settings *starting* at 285F, so holding a lower temperature for, e.g., tempering chocolate or a sous vide bath, or even a simmer would be by-guess-by-golly just like any other hob—your only resort is lots of experience with lower *power* settings.
       
      With heat-tarnished copper, a 350F setting resulted in a wide swinging between 353F and 365F, which I attribute to the copper shedding heat far faster than the other constructions, once the circuit stops the power at temperature. Then, when the circuit cycles the power back on, the copper is so responsive that it quickly overshoots the setting. Aluminum, on the other hand, *undershot*, the 350F setting, registering a cycle of 332-340F.

      I conclude that the IR sensor is set for some particular emissivity, probably for that of stainless steel. If true, the Panasonic, even though it automatically switches frequencies, does not compensate for the different emissivities of copper and aluminum. And even if Panasonic added dedicated aluminum and copper IR sensors, there is enough difference between dirty and polished that the added cost would be wasted. Bottom line here: the temperature setting mode is of extremely low utility, and should not be trusted.
       
      B. Power Mode – Pan Material Comparisons
       
      Given the differences in power setting granularity and maximum power between the two frequencies, it is difficult to assess what X watts into the pot means in, say, a copper-versus-clad or –disk showdown. What is clear, however, is that Setting X under disk and clad seems “hotter” than the same setting under copper and aluminum.

      I will need to precisely calibrate the Panasonic for wattage anyway for the hyperconductivity project, so I will obtain a higher-powered watt meter to determine the wattage of every power setting for both frequencies. Until then, however, the only way I can fairly handicap a race is to apply a reduction figure to the ferromagnetic setting (2400W being 69% of 3500W). Given that we know the wattage at the maximum settings, we can infer that Setting 14 (actually 13.8) on the 20-step ferromagnetic range iis approximately the same heat output as the maximum setting (18) for copper/aluminum.

      The boil times for 4 liters of 50F water in 10” diameter pots shocked me. The 10” x 3mm tinned copper pot’s water reached 211F in 36:41. Not an especially fast time at 2400 watts. The 10” disk-based pressure cooker bottom? Well, it didn’t make it—it took an hour to get to 208F and then hung there. So that left me wondering if the Panasonic engineers simply decided that 2400 watts was enough for copper and aluminum. I have a theory why the copper pot boiled and the SS one didn’t under the same power, but getting into that’s for another time.

      C. Evenness Comparisons
       
      The wires which generate the induction field are wound in a circular pattern; when energized, they create a torus-shaped magnetic field. The wound coil is constructed with an empty hole at its center. As matters of physics, the magnetic field’s intensity drops off extremely fast as a function of the distance from the coil; a few millimeters above the Ceran, the field is so weak no meaningful heat will be generated. This means that most induction cooktops heat *only* the very bottom of pans, and in a distinct 2-dimensional “doughnut” shape.

      All of the above can result in a pan having a cooler central spot, a hotter ring directly over the coil, and a cooler periphery outside the coil. It is left to the cookware to try to even out these thermal discontinuities when cooking. Some materials and pan constructions are better at this than others: the successful constructions utilize more highly-conductive metals such as aluminum and copper, but unless the material is very thick, there can be a ring-shaped hotspot that can scorch food.
      Until the Panasonic arrived to market, hotspot comparisons between ferromagnetic and aluminum/copper pans depended largely on comparing induction’s flat, more discrete heat ring with gas’s more diffuse, 3-dimensional one. Dodgeball-style debate ensued, with few clear conclusions. But now, for the first time, equally-powered flat heat rings in two different frequencies allow us to directly compare evenness in ferromagnetic and aluminum/copper cookware.

      The simplest and easiest way to assess cookware evenness is the “scorchprint”, which does not require infrared or other advanced thermal imaging equipment. I’ve posted on how to conduct scorchprinting elsewhere, but basically a pan is evenly dusted with flour; heat is applied to the pan bottom. As the flour is toasted, any hotspots visually emerge, giving the viewer a useful general idea of evenness.
       
      I will later post the photos of scorchprints I made of 4 different pans run using the Panasonic KY-MK3500: (1) a Demeyere 28cm Proline 5* clad frypan; (2) a Fissler Original Profi disk-base 28cm frypan; a 6mm aluminum omelet pan; and (4) a 32cm x 3.2mm Dehillerin sauté. To make it a fair race, I heated all the pans at 2400W until they reached 450F, and then backed off the power setting to maintain 450F. I did this in order not to compromise my saute’s tin lining. As you will see, both the clad Demeyere and the disk-based Fissler did print the typical brown doughnut, with a cooler center and periphery. By far the most even was the thick, all-aluminum pan, which actually was even over its entirety—even including the walls. The copper sauté was also quite even, although its larger size and mass really dissipated heat; once 450F was dialed in, no more browning happened, even after 30 minutes.
       
      I conclude that the straightgauge pans were far more effective at shunting heat to their peripheries and walls (and also to some extent into the air) than the clad and disk-based pans. The latter accumulated their heat with most of it staying in the center of the pans. Eventually, even the “doughnut hole” blended into the scorch ring because the walls were not bleeding sufficient heat away from the floor. This was especially pronounced in the Fissler, the high wall and rim areas of which never exceeded 125F. The aluminum pan, in contrast varied less than 30F everywhere on the pan.

      D. Other Considerations

      The Panasonic’s fan noise at the cook’s position was noticeable at 63 dBA, higher than with the VMP’s 57 dBA. These levels are characterized as “normal conversation” and “quiet street”, respectively. Interestingly, I found two other, potentially more important differences. First, the Panasonic’s fan stays on, even after the unit is powered off, whereas the VMP’s fan shuts off immediately when the hob is turned off. Second, the Panasonic’s fan steps down from the louder speed to a much quieter (47 dBA, characterized as “quiet home”) level until the Ceran is cool to sustained touch, at which point it shuts off completely. I think the Panasonic’s ability to continue to vent and cool itself is a great feature, especially since a cook could leave a large, full, hot pan on the glass.

      The glowing circle is useless for gauging heat setting or intensity. And while it works to indicate a hot surface, it remains lit long after you can hold your hand in place dead center.
       
      VI. Summary and Lessons
       
      The Panasonic KY-MK3500 is a solid unit, well-conceived and rugged. It is extremely easy to use. It works well with both the common 24kHz frequency used with ferromagnetic cookware, and the 90kHz frequency chosen here for copper and aluminum. It effectively and automatically switches between the two.

      In my opinion, it points the way to expanding the worldwide induction appliance market to include dual frequencies. It also obviates the need to: (a) junk otherwise excellent cookware merely to have induction; and (b) retrofit designs to bond on ferromagnetic outer layers. In fact, in my opinion, my tests indicate that, in a dual-frequency world, adding ferromagnetic bottoms may well be a drag on pans’ performance.
       
      I also consider the Panasonic Met-All to be ground-breaking in what it can tell us about *pans*, because all metallic pans are now commensurable on induction. Clearly (to me anyway), watt-for-watt, the copper and aluminum pans performed better than did the clad and disk-based pans on this unit. Boil times were faster, there was less propensity to scorch, and the conductive-sidewall pans definitely added more heat to the pans’ contents. We may ultimately find that 90kHz fields save energy compared to 24kHz fields, much as copper and aluminum require less heat on gas and electric coil.
      In terms of heat transfer, the copper and aluminum pans came close to emulating the same pans on gas. And at 2400W/3500W it has the power of a full size appliance in a relatively small tabletop package.
       
      The Panasonic is far from perfect, however. It can’t really be considered portable. There are far too few temperature settings, and what few it has are not accurate or consistent in terms of judging pan contents and attaining the same temperature in different pans (and even the same pan unless clean). The luminous ring could easily have been made a useful indicator of intensity, but wasn’t. And it lacks things that should be obvious, including a through-the-glass “button” contact thermocouple, more power granularity, an analog-style control knob, and capacity to accept an external thermocouple probe for PID control.
       
      Most importantly for me, the Panasonic KY-MK3500 portends more good things to come. Retail price remains $1,700-$2,400, but I jumped on it at $611, and I’ve seen it elsewhere for as low as $1,200.
       
      The manual can be found here: ftp://ftp.panasonic.com/commercialfoo...
       
      Photo Credit:  Panasonic Corporation

    • By haresfur
      We have started into fixing the kitchen after starting planning several years ago - almost as long as the dishwasher has been dead and the oven barely functional. And don't get me started on the non-exhaust fan.
       
      Before the destruction but after removing all the crap:
       

       
       
       

       
      The fridge was replaced not too long ago and is staying where it is. We had to have its alcove expanded. Perhaps not the best ergonomic location but it fits. We aren't moving the other appliances or sink very far so are hoping the plumbing and electric are no big deal.
       
      End of first day. We caught a couple of things in time. The fume hood and cupboards over the cook-top were set too low. They were going to set the sink as an over-mount when we had bought and under-mount. Apparently it could be done either way but silly us for not making it clear that the sink described as an undermount should be under the counter top. We decide the cupboard to the right of the oven should open the other way so we can get in there when cooking. Our mistake but I hope we can keep the oil, salt, pepper, etc. there rather than cluttering up the counter. The cabinet guy insisted that the cook-top couldn't be centred over the oven. I still don't understand why but not a big deal. It will be easier to get around the island when someone else is cooking but harder to squeeze past into the pantry.
       
      It seems to me that the walls should have been re-done before the cabinets went up. I think this was easier on the cabinet guy who is doing most of the coordination but probably will be a pain for the plasterer. And we have some trim issues to work out.
       

       

       

       
      Day 2 fixing things, electrical work, and measuring for the countertops. Now we wait for them to be finished before much else can happen.
       

       
      Spock is not impressed.
       
       
    • By &roid
      We’ve lived in our house for about twelve years and did a small extension not long after we moved in. With our growing family (son number two arrived this July) we wanted to get a bit more living space so started looking at options about a year ago. We have a late Victorian house with a separate dining room, as nice as this is it’s been a big waste of space - we probably used it two or three times a year. So the plan was to extend the kitchen to add a decent sized dining area and free up the dining room for something better. 
       
      The kitchen we had is under ten years old so we’ve decided to keep some parts of it, adding new worktops, a large rangetop and a breakfast cabinet with pocket doors to hide away the toaster and coffee machine. 
       
      We’re about halfway through the build at the moment so thought I’d post up some pictures of our progress. Hopefully we’ll be finished this side of Christmas... hopefully!
    • By chocoera
      Hi guys!  So...as we all know hindsight is 20/20....so i'm sure we ALLLLLLLLLLLL  have things we'd do differently if setting up our home or professional workplaces.  I'm working with a space that's approximately 850 sq ft.  If you could create your ideal space, what would you do?  The kicker is, i'm a mixed media kitchen, i dont do straight chocolate work.  I do baking so i'll have a double vertical convection oven, i'm getting rid of my 6 burner range and switching to table top induction burners. I have a dishwasher and big sink for rinsing vs 3 compartment sink (hand sink of course) and mop sink....and i have multiple 7 ft and 8 ft stainless tables. I currently have a "cooling room" set up with 4 speed racks, but thought maybe i should switch to a fridge turned up to 40 or 50F? I freeze things for bulk production, so will still have some chest freezers set higher than normal....but yeah. i'm just at a loss of how to capitalize on space, and keep things organized and storage of bon bons, turtles, barks, chocolate caramel apples (things that need to be stored for packaging by employees before they hit the retail floor)  i know jin from vegas had a fridge set at 50F for cooling molds once sprayed and shelled, then once she filled them, moved to a 40F fridge to set filling, then she sealed them...but i didn't remember where she kept bon bons for her bar (where customers pick and choose) or the ones out ready to be boxed?  i know she and jean marie were freezing for bulk orders etc...but yeah.  my mind is just overwhelmed with possibilities, and i just dont want to mess up this new kitchen layout. i think its harder because i make so many things in my kitchen, so i have pots, pans, sheet pans, springforms, cookie cutters, muffin tins, kitchen aid mixers, a floor mixer,  mol d'arts, baking liners, molds, colors, EZ temper, brushes, kitchen utensils, transfer sheets, bulk chocolate and ingredients blah blah blah.   so. if you guys could make an ideal workflow....would you do a walk-in fridge for confection storage? a few fridges set higher (but would humidity be an issue if stored for multiple days before packaging), build another cooling room (it was a room with drywall/insulation/a door/speedracks and portable AC set to keep that room cooler...), or yeah.  thoughts?  oh yeah. and  i need to fit an enrober in there too.  sooooo, ideal workspace. what's in it?  and go!  :0)
    • By weinoo
      I've started a few topics about various renovation related subjects (here and here), but figured I'd put the overall project in its own. Pix often tell the story even better...
       
      It helps to have these. Well, you need to have these if you expect to get anything done in your coop.
       

       
      Then stuff can start...
       

       

       

       
      And then start getting rebuilt.
       

       

       
      A little better electrical system.
       

       

       
      New pipes have to be done in the walls.
       

       

       

       

       
      This Started on September 8th. They've had approximately 25 days on which work was done.
       
      Proceeding along nicely, I'd say.
  • Recently Browsing   0 members

    No registered users viewing this page.

×